26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fc gamma receptors: glycobiology and therapeutic prospects

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Therapeutic antibodies hold great promise for the treatment of cancer and autoimmune diseases, and developments in antibody–drug conjugates and bispecific antibodies continue to enhance treatment options for patients. Immunoglobulin (Ig) G antibodies are proteins with complex modifications, which have a significant impact on their function. The most important of these modifications is glycosylation, the addition of conserved glycans to the antibody Fc region, which is critical for its interaction with the immune system and induction of effector activities such as antibody-dependent cell cytotoxicity, complement activation and phagocytosis. Communication of IgG antibodies with the immune system is controlled and mediated by Fc gamma receptors (FcγRs), membrane-bound proteins, which relay the information sensed and gathered by antibodies to the immune system. These receptors are also glycoproteins and provide a link between the innate and adaptive immune systems. Recent information suggests that this receptor glycan modification is also important for the interaction with antibodies and downstream immune response. In this study, the current knowledge on FcγR glycosylation is discussed, and some insight into its role and influence on the interaction properties with IgG, particularly in the context of biotherapeutics, is provided. For the purpose of this study, other Fc receptors such as FcαR, FcεR or FcRn are not discussed extensively, as IgG-based antibodies are currently the only therapeutic antibody-based products on the market. In addition, FcγRs as therapeutics and therapeutic targets are discussed, and insight into and comment on the therapeutic aspects of receptor glycosylation are provided.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses.

          Distinct genes encode 6 human receptors for IgG (hFcgammaRs), 3 of which have 2 or 3 polymorphic variants. The specificity and affinity of individual hFcgammaRs for the 4 human IgG subclasses is unknown. This information is critical for antibody-based immunotherapy which has been increasingly used in the clinics. We investigated the binding of polyclonal and monoclonal IgG1, IgG2, IgG3, and IgG4 to FcgammaRI; FcgammaRIIA, IIB, and IIC; FcgammaRIIIA and IIIB; and all known polymorphic variants. Wild-type and low-fucosylated IgG1 anti-CD20 and anti-RhD mAbs were also examined. We found that (1) IgG1 and IgG3 bind to all hFcgammaRs; (2) IgG2 bind not only to FcgammaRIIA(H131), but also, with a lower affinity, to FcgammaRIIA(R131) and FcgammaRIIIA(V158); (3) IgG4 bind to FcgammaRI, FcgammaRIIA, IIB and IIC and FcgammaRIIIA(V158); and (4) the inhibitory receptor FcgammaRIIB has a lower affinity for IgG1, IgG2, and IgG3 than all other hFcgammaRs. We also identified parameters that determine the specificity and affinity of hFcgammaRs for IgG subclasses. These results document how hFcgammaR specificity and affinity may account for the biological activities of antibodies. They therefore highlight the role of specific hFcgammaRs in the therapeutic and pathogenic effects of antibodies in disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IgG Fc receptors.

            Since the description of the first mouse knockout for an IgG Fc receptor seven years ago, considerable progress has been made in defining the in vivo functions of these receptors in diverse biological systems. The role of activating Fc gamma Rs in providing a critical link between ligands and effector cells in type II and type III inflammation is now well established and has led to a fundamental revision of the significance of these receptors in initiating cellular responses in host defense, in determining the efficacy of therapeutic antibodies, and in pathological autoimmune conditions. Considerable progress has been made in the last two years on the in vivo regulation of these responses, through the appreciation of the importance of balancing activation responses with inhibitory signaling. The inhibitory FcR functions in the maintenance of peripheral tolerance, in regulating the threshold of activation responses, and ultimately in terminating IgG mediated effector stimulation. The consequences of deleting the inhibitory arm of this system are thus manifested in both the afferent and efferent immune responses. The hyperresponsive state that results leads to greatly magnified effector responses by cytotoxic antibodies and immune complexes and can culminate in autoimmunity and autoimmune disease when modified by environmental or genetic factors. Fc gamma Rs offer a paradigm for the biological significance of balancing activation and inhibitory signaling in the expanding family of activation/inhibitory receptor pairs found in the immune system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose.

              Antibody-mediated cellular cytotoxicity (ADCC), a key immune effector mechanism, relies on the binding of antigen-antibody complexes to Fcγ receptors expressed on immune cells. Antibodies lacking core fucosylation show a large increase in affinity for FcγRIIIa leading to an improved receptor-mediated effector function. Although afucosylated IgGs exist naturally, a next generation of recombinant therapeutic, glycoenginereed antibodies is currently being developed to exploit this finding. In this study, the crystal structures of a glycosylated Fcγ receptor complexed with either afucosylated or fucosylated Fc were determined allowing a detailed, molecular understanding of the regulatory role of Fc-oligosaccharide core fucosylation in improving ADCC. The structures reveal a unique type of interface consisting of carbohydrate-carbohydrate interactions between glycans of the receptor and the afucosylated Fc. In contrast, in the complex structure with fucosylated Fc, these contacts are weakened or nonexistent, explaining the decreased affinity for the receptor. These findings allow us to understand the higher efficacy of therapeutic antibodies lacking the core fucose and also suggest a unique mechanism by which the immune system can regulate antibody-mediated effector functions.
                Bookmark

                Author and article information

                Journal
                J Inflamm Res
                J Inflamm Res
                Journal of Inflammation Research
                Journal of Inflammation Research
                Dove Medical Press
                1178-7031
                2016
                16 November 2016
                : 9
                : 209-219
                Affiliations
                [1 ]School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
                [2 ]Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, UK
                [3 ]NIBRT Glycoscience Group, National Institute for Bioprocessing, Research and Training, Dublin, Ireland
                Author notes
                Correspondence: Jerrard M Hayes, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland, Tel +353 1 96 3527, Email jehayes@ 123456tcd.ie
                Article
                jir-9-209
                10.2147/JIR.S121233
                5118039
                27895507
                b8e7c7cc-93fe-4105-8976-8487aa95d505
                © 2016 Hayes et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Immunology
                glycosylation,igg,fc gamma receptor,therapeutic monoclonal antibody
                Immunology
                glycosylation, igg, fc gamma receptor, therapeutic monoclonal antibody

                Comments

                Comment on this article