14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Therapeutic potential of extracellular vesicles derived from human mesenchymal stem cells in a model of progressive multiple sclerosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extracellular vesicles (EVs) have emerged as important mediators of intercellular communication and as possible therapeutic agents in inflammation-mediated demyelinating diseases, including multiple sclerosis (MS). In the present study, we investigated whether intravenously administered EVs derived from mesenchymal stem cells (MSCs) from human adipose tissue might mediate recovery in Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease, a progressive model of MS. SJL/J mice were subjected to EV treatment once the disease was established. We found that intravenous EV administration improved motor deficits, reduced brain atrophy, increased cell proliferation in the subventricular zone and decreased inflammatory infiltrates in the spinal cord in mice infected with TMEV. EV treatment was also capable of modulating neuroinflammation, given glial fibrillary acidic protein and Iba-1 staining were reduced in the brain, whereas myelin protein expression was increased. Changes in the morphology of microglial cells in the spinal cord suggest that EVs also modulate the activation state of microglia. The clear reduction in plasma cytokine levels, mainly in the Th1 and Th17 phenotypes, in TMEV mice treated with EVs confirms the immunomodulatory ability of intravenous EVs. According to our results, EV administration attenuates motor deficits through immunomodulatory actions, diminishing brain atrophy and promoting remyelination. Further studies are necessary to establish EV delivery as a possible therapy for the neurodegenerative phase of MS.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple Sclerosis

          New England Journal of Medicine, 343(13), 938-952
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The relation between inflammation and neurodegeneration in multiple sclerosis brains

            Some recent studies suggest that in progressive multiple sclerosis, neurodegeneration may occur independently from inflammation. The aim of our study was to analyse the interdependence of inflammation, neurodegeneration and disease progression in various multiple sclerosis stages in relation to lesional activity and clinical course, with a particular focus on progressive multiple sclerosis. The study is based on detailed quantification of different inflammatory cells in relation to axonal injury in 67 multiple sclerosis autopsies from different disease stages and 28 controls without neurological disease or brain lesions. We found that pronounced inflammation in the brain is not only present in acute and relapsing multiple sclerosis but also in the secondary and primary progressive disease. T- and B-cell infiltrates correlated with the activity of demyelinating lesions, while plasma cell infiltrates were most pronounced in patients with secondary progressive multiple sclerosis (SPMS) and primary progressive multiple sclerosis (PPMS) and even persisted, when T- and B-cell infiltrates declined to levels seen in age matched controls. A highly significant association between inflammation and axonal injury was seen in the global multiple sclerosis population as well as in progressive multiple sclerosis alone. In older patients (median 76 years) with long-disease duration (median 372 months), inflammatory infiltrates declined to levels similar to those found in age-matched controls and the extent of axonal injury, too, was comparable with that in age-matched controls. Ongoing neurodegeneration in these patients, which exceeded the extent found in normal controls, could be attributed to confounding pathologies such as Alzheimer's or vascular disease. Our study suggests a close association between inflammation and neurodegeneration in all lesions and disease stages of multiple sclerosis. It further indicates that the disease processes of multiple sclerosis may die out in aged patients with long-standing disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth.

              Multipotent mesenchymal stromal cells (MSCs) have potential therapeutic benefit for the treatment of neurological diseases and injury. MSCs interact with and alter brain parenchymal cells by direct cell-cell communication and/or by indirect secretion of factors and thereby promote functional recovery. In this study, we found that MSC treatment of rats subjected to middle cerebral artery occlusion (MCAo) significantly increased microRNA 133b (miR-133b) level in the ipsilateral hemisphere. In vitro, miR-133b levels in MSCs and in their exosomes increased after MSCs were exposed to ipsilateral ischemic tissue extracts from rats subjected to MCAo. miR-133b levels were also increased in primary cultured neurons and astrocytes treated with the exosome-enriched fractions released from these MSCs. Knockdown of miR-133b in MSCs confirmed that the increased miR-133b level in astrocytes is attributed to their transfer from MSCs. Further verification of this exosome-mediated intercellular communication was performed using a cel-miR-67 luciferase reporter system and an MSC-astrocyte coculture model. Cel-miR-67 in MSCs was transferred to astrocytes via exosomes between 50 and 100 nm in diameter. Our data suggest that the cel-miR-67 released from MSCs was primarily contained in exosomes. A gap junction intercellular communication inhibitor arrested the exosomal microRNA communication by inhibiting exosome release. Cultured neurons treated with exosome-enriched fractions from MSCs exposed to 72 hours post-MCAo brain extracts significantly increased the neurite branch number and total neurite length. This study provides the first demonstration that MSCs communicate with brain parenchymal cells and may regulate neurite outgrowth by transfer of miR-133b to neural cells via exosomes. Copyright © 2012 AlphaMed Press.
                Bookmark

                Author and article information

                Contributors
                Role: Data curationRole: Formal analysisRole: InvestigationRole: Methodology
                Role: Data curationRole: Formal analysisRole: InvestigationRole: Methodology
                Role: Data curationRole: Formal analysisRole: InvestigationRole: Methodology
                Role: Formal analysisRole: InvestigationRole: Methodology
                Role: Formal analysisRole: InvestigationRole: Methodology
                Role: InvestigationRole: Methodology
                Role: Formal analysisRole: Methodology
                Role: InvestigationRole: Supervision
                Role: Formal analysisRole: MethodologyRole: Writing – original draft
                Role: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: SupervisionRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                19 September 2018
                2018
                : 13
                : 9
                : e0202590
                Affiliations
                [1 ] Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid, Madrid, Spain
                [2 ] Functional and Systems Neurobiology Department, Neuroimmunology Group, Cajal Institute, Madrid, Spain
                Fraunhofer Research Institution of Marine Biotechnology, GERMANY
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-6615-4729
                Article
                PONE-D-18-04980
                10.1371/journal.pone.0202590
                6145506
                30231069
                b8edd4d2-23d0-442a-b579-666c8956609c
                © 2018 Laso-García et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 February 2018
                : 5 August 2018
                Page count
                Figures: 5, Tables: 0, Pages: 16
                Funding
                Funded by: Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Fondo Europeo de Desarrollo Regional (FEDER)
                Award ID: RD12/0032/0008
                Award Recipient :
                Funded by: Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Fondo Europeo de Desarrollo Regional (FEDER)
                Award ID: RD16/0015/0021
                Award Recipient :
                This study was supported by Red Española de Esclerosis Múltiple Grants RD12/0032/0008 and RD16/0015/0021 (sponsored by the Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Fondo Europeo de Desarrollo Regional [FEDER]) to C.G. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Clinical Medicine
                Clinical Immunology
                Autoimmune Diseases
                Multiple Sclerosis
                Biology and Life Sciences
                Immunology
                Clinical Immunology
                Autoimmune Diseases
                Multiple Sclerosis
                Medicine and Health Sciences
                Immunology
                Clinical Immunology
                Autoimmune Diseases
                Multiple Sclerosis
                Medicine and Health Sciences
                Neurology
                Demyelinating Disorders
                Multiple Sclerosis
                Medicine and Health Sciences
                Neurology
                Neurodegenerative Diseases
                Multiple Sclerosis
                Biology and Life Sciences
                Anatomy
                Nervous System
                Neuroanatomy
                Spinal Cord
                Medicine and Health Sciences
                Anatomy
                Nervous System
                Neuroanatomy
                Spinal Cord
                Biology and Life Sciences
                Neuroscience
                Neuroanatomy
                Spinal Cord
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Cytokines
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Cytokines
                Biology and Life Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Medicine and Health Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Biology and Life Sciences
                Developmental Biology
                Molecular Development
                Cytokines
                Research and Analysis Methods
                Immunologic Techniques
                Immunoassays
                Immunofluorescence
                Biology and Life Sciences
                Anatomy
                Nervous System
                Central Nervous System
                Medicine and Health Sciences
                Anatomy
                Nervous System
                Central Nervous System
                Medicine and Health Sciences
                Infectious Diseases
                Infectious Diseases of the Nervous System
                Encephalomyelitis
                Medicine and Health Sciences
                Neurology
                Infectious Diseases of the Nervous System
                Encephalomyelitis
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Vesicles
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Stem Cells
                Mesenchymal Stem Cells
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article