666
views
0
recommends
+1 Recommend
1 collections
    1
    shares

      The focus of Nano-Horizons is the multidisciplinary field of Nanosciences & Nanotechnologies. To submit to the journal: https://unisapressjournals.co.za/index.php/NH/about/submissions

      scite_
       
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Peculiar Size Effects in Nanoscaled Systems

      research-article
      Bookmark

            Abstract

            In this minireview, we intend to shed light on relatively recent examples related to the size and shape effects on materials at the nanoscale and their usage to test a set of quantum mechanics governed phenomena.

            Content

            Author and article information

            Journal
            Nano-Horizons
            UNISA Press
            20 July 2022
            : 1
            : 1
            Affiliations
            [1 ] UNESCO–Unisa Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa;
            Author notes
            Author information
            https://orcid.org/0000-0002-3820-7838
            Article
            10.25159/NanoHorizons.9d53e2220e31
            b8ef5ded-736d-437a-801c-9d53e2220e31

            This work has been published open access under Creative Commons Attribution License CC BY 4.0 , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at www.scienceopen.com .

            History
            : 28 April 2022
            : 3 August 2022
            Funding
            UNISA U2ACN2-2022
            Categories

            Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
            Nanomaterials
            nanoscale,nanomaterials,size effects,surface effects,surface coordination,quantum confinement,electrons or phonons confinement,surface-to-volume ratio

            References

            1. Rao C.N.R., Biswas Kanishka. Characterization of Nanomaterials by Physical Methods. Annual Review of Analytical Chemistry. Vol. 2(1):435–462. 2009. Annual Reviews. [Cross Ref]

            2. Santamaria Annette. Historical Overview of Nanotechnology and NanotoxicologyMethods in Molecular Biology. p. 1–12. 2012. Humana Press. [Cross Ref]

            3. Mitchell Michael J., Billingsley Margaret M., Haley Rebecca M., Wechsler Marissa E., Peppas Nicholas A., Langer Robert. Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery. Vol. 20(2):101–124. 2021. Springer Science and Business Media LLC. [Cross Ref]

            4. Jeyaraj Muniyandi, Gurunathan Sangiliyandi, Qasim Muhammad, Kang Min-Hee, Kim Jin-Hoi. A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. Nanomaterials. Vol. 9(12)2019. MDPI AG. [Cross Ref]

            5. Lieber Charles M., Chen Chia-Chun. Preparation of Fullerenes and Fullerene-Based MaterialsSolid State Physics. p. 109–148. 1994. Elsevier. [Cross Ref]

            6. Jeevanandam Jaison, Barhoum Ahmed, Chan Yen S, Dufresne Alain, Danquah Michael K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology. Vol. 9:1050–1074. 2018. Beilstein Institut. [Cross Ref]

            7. Ago Hiroki. CVD Growth of High-Quality Single-Layer GrapheneFrontiers of Graphene and Carbon Nanotubes. p. 3–20. 2015. Springer Japan. [Cross Ref]

            8. Kong Y. C., Yu D. P., Zhang B., Fang W., Feng S. Q.. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Applied Physics Letters. Vol. 78(4):407–409. 2001. AIP Publishing. [Cross Ref]

            9. Cao H., Zhao Y. G., Ho S. T., Seelig E. W., Wang Q. H., Chang R. P. H.. Random Laser Action in Semiconductor Powder. Physical Review Letters. Vol. 82(11):2278–2281. 1999. American Physical Society (APS). [Cross Ref]

            10. Guo Lin, Yang Shihe, Yang Chunlei, Yu Ping, Wang Jiannong, Ge Weikun, Wong George K. L.. Synthesis and Characterization of Poly(vinylpyrrolidone)-Modified Zinc Oxide Nanoparticles. Chemistry of Materials. Vol. 12(8):2268–2274. 2000. American Chemical Society (ACS). [Cross Ref]

            11. Ngom B.D., Mpahane T., Manikandan E., Maaza M.. ZnO nano-discs by lyophilization process: Size effects on their intrinsic luminescence. Journal of Alloys and Compounds. Vol. 656:758–763. 2016. Elsevier BV. [Cross Ref]

            12. Kong Xiang Yang, Wang Zhong Lin. Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts. Nano Letters. Vol. 3(12):1625–1631. 2003. American Chemical Society (ACS). [Cross Ref]

            13. Joseph Mathew, Tabata Hitoshi, Kawai Tomoji. p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping. Japanese Journal of Applied Physics. Vol. 38(Part 2, No. 11A)1999. IOP Publishing. [Cross Ref]

            14. Kennedy J., Carder D. A., Markwitz A., Reeves R. J.. Properties of nitrogen implanted and electron beam annealed bulk ZnO. Journal of Applied Physics. Vol. 107(10)2010. AIP Publishing. [Cross Ref]

            15. Kennedy J., Murmu P.P., Manikandan E., Lee S.Y.. Investigation of structural and photoluminescence properties of gas and metal ions doped zinc oxide single crystals. Journal of Alloys and Compounds. Vol. 616:614–617. 2014. Elsevier BV. [Cross Ref]

            16. Fang F, Futter J, Markwitz A, Kennedy J. UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method. Nanotechnology. Vol. 20(24)2009. IOP Publishing. [Cross Ref]

            17. Haase Markus, Weller Horst, Henglein Arnim. Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron storage on zinc oxide particles and size quantization. The Journal of Physical Chemistry. Vol. 92(2):482–487. 1988. American Chemical Society (ACS). [Cross Ref]

            18. Buda F., Kohanoff J., Parrinello M.. Optical properties of porous silicon: A first-principles study. Physical Review Letters. Vol. 69(8):1272–1275. 1992. American Physical Society (APS). [Cross Ref]

            19. Hearne G. R., Zhao J., Dawe A. M., Pischedda V., Maaza M., Nieuwoudt M. K., Kibasomba P., Nemraoui O., Comins J. D., Witcomb M. J.. Effect of grain size on structural transitions in anatase<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">Ti</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>: A Raman spectroscopy study at high pressure. Physical Review B. Vol. 70(13)2004. American Physical Society (APS). [Cross Ref]

            20. Colvin V. L., Schlamp M. C., Alivisatos A. P.. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature. Vol. 370(6488):354–357. 1994. Springer Science and Business Media LLC. [Cross Ref]

            21. Brus Louis. Electronic wave functions in semiconductor clusters: experiment and theory. The Journal of Physical Chemistry. Vol. 90(12):2555–2560. 1986. American Chemical Society (ACS). [Cross Ref]

            22. Meulenkamp Eric A.. Synthesis and Growth of ZnO Nanoparticles. The Journal of Physical Chemistry B. Vol. 102(29):5566–5572. 1998. American Chemical Society (ACS). [Cross Ref]

            23. Wong Eva M., Bonevich John E., Searson Peter C.. Growth Kinetics of Nanocrystalline ZnO Particles from Colloidal Suspensions. The Journal of Physical Chemistry B. Vol. 102(40):7770–7775. 1998. American Chemical Society (ACS). [Cross Ref]

            24. Cho Sunglae, Ma Jing, Kim Yunki, Sun Yi, Wong George K. L., Ketterson John B.. Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn. Applied Physics Letters. Vol. 75(18):2761–2763. 1999. AIP Publishing. [Cross Ref]

            25. Studenikin S. A., Golego Nickolay, Cocivera Michael. Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. Journal of Applied Physics. Vol. 84(4):2287–2294. 1998. AIP Publishing. [Cross Ref]

            26. Ko Hang-Ju, Yao Takafumi, Chen Yefan, Hong Soon-Ku. Investigation of ZnO epilayers grown under various Zn/O ratios by plasma-assisted molecular-beam epitaxy. Journal of Applied Physics. Vol. 92(8):4354–4360. 2002. AIP Publishing. [Cross Ref]

            27. Koida T., Chichibu S. F., Uedono A., Tsukazaki A., Kawasaki M., Sota T., Segawa Y., Koinuma H.. Correlation between the photoluminescence lifetime and defect density in bulk and epitaxial ZnO. Applied Physics Letters. Vol. 82(4):532–534. 2003. AIP Publishing. [Cross Ref]

            28. Bethke S., Pan H., Wessels B. W.. Luminescence of heteroepitaxial zinc oxide. Applied Physics Letters. Vol. 52(2):138–140. 1988. AIP Publishing. [Cross Ref]

            29. Chen Yefan, Bagnall D. M., Koh Hang-jun, Park Ki-tae, Hiraga Kenji, Zhu Ziqiang, Yao Takafumi. Plasma assisted molecular beam epitaxy of ZnO on <i>c</i> -plane sapphire: Growth and characterization. Journal of Applied Physics. Vol. 84(7):3912–3918. 1998. AIP Publishing. [Cross Ref]

            30. Pan Zheng Wei, Dai Zu Rong, Wang Zhong Lin. Nanobelts of Semiconducting Oxides. Science. Vol. 291(5510):1947–1949. 2001. American Association for the Advancement of Science (AAAS). [Cross Ref]

            31. Ngom B.D., Chaker M., Manyala N., Lo B., Maaza M., Beye A.C.. Temperature-dependent growth mode of W-doped ZnO nanostructures. Applied Surface Science. Vol. 257(14):6226–6232. 2011. Elsevier BV. [Cross Ref]

            32. Ngom B.D., Sakho O., Manyala N., Kana J.B., Mlungisi N., Guerbous L., Fasasi A.Y., Maaza M., Beye A.C.. Structural, morphological and photoluminescence properties of W-doped ZnO nanostructures. Applied Surface Science. Vol. 255(16):7314–7318. 2009. Elsevier BV. [Cross Ref]

            33. Kaidashev E. M., Lorenz M., von Wenckstern H., Rahm A., Semmelhack H.-C., Han K.-H., Benndorf G., Bundesmann C., Hochmuth H., Grundmann M.. High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Applied Physics Letters. Vol. 82(22):3901–3903. 2003. AIP Publishing. [Cross Ref]

            34. Wang Xudong, Ding Yong, Summers Christopher J., Wang Zhong Lin. Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts. The Journal of Physical Chemistry B. Vol. 108(26):8773–8777. 2004. American Chemical Society (ACS). [Cross Ref]

            35. Qiu Zhiren, Wong K. S., Wu Mingmei, Lin Wenjiao, Xu Huifang. Microcavity lasing behavior of oriented hexagonal ZnO nanowhiskers grown by hydrothermal oxidation. Applied Physics Letters. Vol. 84(15):2739–2741. 2004. AIP Publishing. [Cross Ref]

            36. Tolbert Sarah H., Alivisatos A. P.. The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure. The Journal of Chemical Physics. Vol. 102(11):4642–4656. 1995. AIP Publishing. [Cross Ref]

            37. Shalish Ilan, Temkin Henryk, Narayanamurti Venkatesh. Size-dependent surface luminescence in ZnO nanowires. Physical Review B. Vol. 69(24)2004. American Physical Society (APS). [Cross Ref]

            38. Mićić Olga I., Sprague Julian, Lu Zhenghao, Nozik Arthur J.. Highly efficient band‐edge emission from InP quantum dots. Applied Physics Letters. Vol. 68(22):3150–3152. 1996. AIP Publishing. [Cross Ref]

            39. Mićić O. I., Cheong H. M., Fu H., Zunger A., Sprague J. R., Mascarenhas A., Nozik A. J.. Size-Dependent Spectroscopy of InP Quantum Dots. The Journal of Physical Chemistry B. Vol. 101(25):4904–4912. 1997. American Chemical Society (ACS). [Cross Ref]

            40. Buffat Ph., Borel J-P.. Size effect on the melting temperature of gold particles. Physical Review A. Vol. 13(6):2287–2298. 1976. American Physical Society (APS). [Cross Ref]

            41. KANA N., KHAMLICH S., KANA KANA J. B., MAAZA M.. PECULIAR SURFACE SIZE-EFFECTS IN <font>NaCl</font> NANO-CRYSTALS. Surface Review and Letters. Vol. 20(01)2013. World Scientific Pub Co Pte Lt. [Cross Ref]

            42. Halperin W. P.. Quantum size effects in metal particles. Reviews of Modern Physics. Vol. 58(3):533–606. 1986. American Physical Society (APS). [Cross Ref]

            43. Skripov V. P., Koverda V. P., Skokov V. N.. Size effect on melting of small particles. Physica Status Solidi (a). Vol. 66(1):109–118. 1981. Wiley. [Cross Ref]

            44. Heidenreich A., Oref I., Jortner Joshua. Isomerization dynamics of sodium chloride tetrameric clusters. The Journal of Physical Chemistry. Vol. 96(19):7517–7523. 1992. American Chemical Society (ACS). [Cross Ref]

            45. Landman Uzi, Scharf Dafna, Jortner Joshua. Electron Localization in Alkali-Halide Clusters. Physical Review Letters. Vol. 54(16):1860–1863. 1985. American Physical Society (APS). [Cross Ref]

            46. Scharf Dafna, Jortner Joshua, Landman Uzi. Cluster isomerization induced by electron attachment. The Journal of Chemical Physics. Vol. 87(5):2716–2723. 1987. AIP Publishing. [Cross Ref]

            47. Patterson D., Morrison J. A., Thompson F. W.. A LOW TEMPERATURE PARTICLE SIZE EFFECT ON THE HEAT CAPACITY OF SODIUM CHLORIDE. Canadian Journal of Chemistry. Vol. 33(2):240–244. 1955. Canadian Science Publishing. [Cross Ref]

            48. Campana J. E., Barlak T. M., Colton R. J., DeCorpo J. J., Wyatt J. R., Dunlap B. I.. Effect of Cluster Surface Energies on Secondary-Ion-Intensity Distributions from Ionic Crystals. Physical Review Letters. Vol. 47(15):1046–1049. 1981. American Physical Society (APS). [Cross Ref]

            49. Martin T.P.. Alkali halide clusters and microcrystals. Physics Reports. Vol. 95(3):167–199. 1983. Elsevier BV. [Cross Ref]

            50. Whetten Robert L.. Alkali halide nanocrystals. Accounts of Chemical Research. Vol. 26(2):49–56. 1993. American Chemical Society (ACS). [Cross Ref]

            51. Lester J. E., Somorjai G. A.. THE EFFECT OF DISLOCATIONS ON THE VAPORIZATION RATE OF NaCl SINGLE CRYSTALS. Applied Physics Letters. Vol. 12(6):216–217. 1968. AIP Publishing. [Cross Ref]

            52. Hudgins Robert R., Dugourd Philippe, Tenenbaum Jason M., Jarrold Martin F.. Structural Transitions in Sodium Chloride Nanocrystals. Physical Review Letters. Vol. 78(22):4213–4216. 1997. American Physical Society (APS). [Cross Ref]

            53. Couchman P. R., Jesser W. A.. Thermodynamic theory of size dependence of melting temperature in metals. Nature. Vol. 269(5628):481–483. 1977. Springer Science and Business Media LLC. [Cross Ref]

            54. Bersani D., Lottici P. P., Ding Xing-Zhao. Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Applied Physics Letters. Vol. 72(1):73–75. 1998. AIP Publishing. [Cross Ref]

            55. Richter H., Wang Z.P., Ley L.. The one phonon Raman spectrum in microcrystalline silicon. Solid State Communications. Vol. 39(5):625–629. 1981. Elsevier BV. [Cross Ref]

            56. Campbell I.H., Fauchet P.M.. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Communications. Vol. 58(10):739–741. 1986. Elsevier BV. [Cross Ref]

            57. dos Santos D.R., Torriani I.L.. Crystallite size determination in μc-Ge films by x-ray diffraction and Raman line profile analysis. Solid State Communications. Vol. 85(4):307–310. 1993. Elsevier BV. [Cross Ref]

            58. Bersani D., Lottici P. P.. Confinement effects on the LO-phonons in CdSexS1–x doped glasses. physica status solidi (b). Vol. 174(2):575–582. 1992. Wiley. [Cross Ref]

            59. Tu A., Persans P. D.. Raman scattering as a compositional probe of II‐VI ternary semiconductor nanocrystals. Applied Physics Letters. Vol. 58(14):1506–1508. 1991. AIP Publishing. [Cross Ref]

            60. Bottani C. E., Mantini C., Milani P., Manfredini M., Stella A., Tognini P., Cheyssac P., Kofman R.. Raman, optical‐absorption, and transmission electron microscopy study of size effects in germanium quantum dots. Applied Physics Letters. Vol. 69(16):2409–2411. 1996. AIP Publishing. [Cross Ref]

            61. Lottici P. P., Bersani D., Braghini M., Montenero A.. Raman scattering characterization of gel-derived titania glass. Journal of Materials Science. Vol. 28(1):177–183. 1993. Springer Science and Business Media LLC. [Cross Ref]

            62. Ohsaka T., Yamaoka S., Shimomura O.. Effect of hydrostatic pressure on the Raman spectrum of anatase (TiO2). Solid State Communications. Vol. 30(6):345–347. 1979. Elsevier BV. [Cross Ref]

            63. Traylor J. G., Smith H. G., Nicklow R. M., Wilkinson M. K.. Lattice Dynamics of Rutile. Physical Review B. Vol. 3(10):3457–3472. 1971. American Physical Society (APS). [Cross Ref]

            64. Pyykkö Pekka. Relativistic Quantum ChemistryAdvances in Quantum Chemistry Volume 11. p. 353–409. 1978. Elsevier. [Cross Ref]

            65. Wilkinson M. C.. Surface properties of mercury. Chemical Reviews. Vol. 72(6):575–625. 1972. American Chemical Society (ACS). [Cross Ref]

            66. Amokrane S., Badaiali J.‐P., Rosinberg M. ‐L., Goodisman J.. First‐order model for the surface properties of liquid metals: Electroneutrality conditions and interionic correlations. The Journal of Chemical Physics. Vol. 75(11):5543–5555. 1981. AIP Publishing. [Cross Ref]

            67. Lang N. D., Kohn W.. Theory of Metal Surfaces: Charge Density and Surface Energy. Physical Review B. Vol. 1(12):4555–4568. 1970. American Physical Society (APS). [Cross Ref]

            68. Chacón E., Alvarellos J. E., Tarazona P.. Nonlocal kinetic energy functional for nonhomogeneous electron systems. Physical Review B. Vol. 32(12):7868–7877. 1985. American Physical Society (APS). [Cross Ref]

            69. Magnussen O. M., Ocko B. M., Regan M. J., Penanen K., Pershan P. S., Deutsch M.. X-Ray Reflectivity Measurements of Surface Layering in Liquid Mercury. Physical Review Letters. Vol. 74(22):4444–4447. 1995. American Physical Society (APS). [Cross Ref]

            70. Bafile Ubaldo, Hochgesand Kai, Winter Roland, Barocchi Fabrizio, Convert Pierre, Hansen Thomas, Fischer Henry E.. Neutron diffraction on mercury: density dependence of the static structure factor. Journal of Non-Crystalline Solids. Vol. 250-252:35–39. 1999. Elsevier BV. [Cross Ref]

            71. Bafile U., Barocchi F., Cilloco F., Hochgesand K., Winter R., Fischer H.E.. The microscopic structure of liquid mercury from neutron and X-ray diffraction. Physica B: Condensed Matter. Vol. 276-278:452–453. 2000. Elsevier BV. [Cross Ref]

            72. Young David A.. Phase Diagrams of the Elements. 1991. University of California Press. [Cross Ref]

            73. Masui Toshiyuki, Hirai Hidekazu, Hamada Ryo, Imanaka Nobuhito, Adachi Gin-ya, Sakata Takao, Mori Hirotaro. Synthesis and characterization of cerium oxide nanoparticles coated with turbostratic boron nitride. Journal of Materials Chemistry. Vol. 13(3):622–627. 2003. Royal Society of Chemistry (RSC). [Cross Ref]

            74. Gaston Nicola, Paulus Beate, Rosciszewski Krzysztof, Schwerdtfeger Peter, Stoll Hermann. Lattice structure of mercury: Influence of electronic correlation. Physical Review B. Vol. 74(9)2006. American Physical Society (APS). [Cross Ref]

            75. Rayleigh Lord. X. <i>On the electromagnetic theory of light</i>. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Vol. 12(73):81–101. 1881. Informa UK Limited. [Cross Ref]

            76. Rayleigh Lord. XXXIV. <i>On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky</i>. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Vol. 47(287):375–384. 1899. Informa UK Limited. [Cross Ref]

            77. Mie Gustav. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik. Vol. 330(3):377–445. 1908. Wiley. [Cross Ref]

            78. The Mie Theory. 2012. Springer Berlin Heidelberg. [Cross Ref]

            79. Wang Meng, Cao Min, Guo ZhiRui, Gu Ning. Generalized multiparticle Mie modeling of light scattering by cells. Chinese Science Bulletin. Vol. 58(21):2663–2666. 2013. Springer Science and Business Media LLC. [Cross Ref]

            80. Anderson P. W.. Absence of Diffusion in Certain Random Lattices. Physical Review. Vol. 109(5):1492–1505. 1958. American Physical Society (APS). [Cross Ref]

            81. Anderson P. W.. Local moments and localized states. Reviews of Modern Physics. Vol. 50(2):191–201. 1978. American Physical Society (APS). [Cross Ref]

            82. Licciardello D. C., Thouless D. J.. Constancy of Minimum Metallic Conductivity in Two Dimensions. Physical Review Letters. Vol. 35(21):1475–1478. 1975. American Physical Society (APS). [Cross Ref]

            83. Schuster H. G.. On a relation between the mobility edge problem and an isotropicXY model. Zeitschrift f�r Physik B Condensed Matter and Quanta. Vol. 31(1):99–104. 1978. Springer Science and Business Media LLC. [Cross Ref]

            84. Abrahams E., Anderson P. W., Licciardello D. C., Ramakrishnan T. V.. Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions. Physical Review Letters. Vol. 42(10):673–676. 1979. American Physical Society (APS). [Cross Ref]

            85. Mott N.F., Twose W.D.. The theory of impurity conduction. Advances in Physics. Vol. 10(38):107–163. 1961. Informa UK Limited. [Cross Ref]

            86. Wiersma Diederik S., van Albada Meint P., van Tiggelen Bart A., Lagendijk Ad. Experimental Evidence for Recurrent Multiple Scattering Events of Light in Disordered Media. Physical Review Letters. Vol. 74(21):4193–4196. 1995. American Physical Society (APS). [Cross Ref]

            87. Wiersma Diederik S., Bartolini Paolo, Lagendijk Ad, Righini Roberto. Localization of light in a disordered medium. Nature. Vol. 390(6661):671–673. 1997. Springer Science and Business Media LLC. [Cross Ref]

            88. Cao Hui, Yamilov Alexey, Xu Junying, Seelig Eric, Chang Robert P.. Lasing in disordered media. SPIE Proceedings. 2003. SPIE. [Cross Ref]

            89. Maslov A. V., Ning C. Z.. Reflection of guided modes in a semiconductor nanowire laser. Applied Physics Letters. Vol. 83(6):1237–1239. 2003. AIP Publishing. [Cross Ref]

            90. Dalichaouch Rachida, Armstrong J. P., Schultz S., Platzman P. M., McCall S. L.. Microwave localization by two-dimensional random scattering. Nature. Vol. 354(6348):53–55. 1991. Springer Science and Business Media LLC. [Cross Ref]

            91. Abrahams E., Anderson P. W., Licciardello D. C., Ramakrishnan T. V.. Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions. Physical Review Letters. Vol. 42(10):673–676. 1979. American Physical Society (APS). [Cross Ref]

            92. Jonckheere Thibaut, Müller Cord A., Kaiser Robin, Miniatura Christian, Delande Dominique. Multiple Scattering of Light by Atoms in the Weak Localization Regime. Physical Review Letters. Vol. 85(20):4269–4272. 2000. American Physical Society (APS). [Cross Ref]

            93. Zhu J. X., Pine D. J., Weitz D. A.. Internal reflection of diffusive light in random media. Physical Review A. Vol. 44(6):3948–3959. 1991. American Physical Society (APS). [Cross Ref]

            94. Arya K., Su Z. B., Birman Joseph L.. Anderson Localization of Electromagnetic Waves in a Dielectric Medium of Randomly Distributed Metal Particles. Physical Review Letters. Vol. 57(21):2725–2728. 1986. American Physical Society (APS). [Cross Ref]

            95. Bertolotti Jacopo, Gottardo Stefano, Wiersma Diederik S., Ghulinyan Mher, Pavesi Lorenzo. Optical Necklace States in Anderson Localized 1D Systems. Physical Review Letters. Vol. 94(11)2005. American Physical Society (APS). [Cross Ref]

            96. Karbasi Salman, Mirr Craig R., Frazier Ryan J., Yarandi Parisa Gandomkar, Koch Karl W., Mafi Arash. Detailed investigation of the impact of the fiber design parameters on the transverse Anderson localization of light in disordered optical fibers. Optics Express. Vol. 20(17)2012. The Optical Society. [Cross Ref]

            97. Karbasi Salman, Hawkins Thomas, Ballato John, Koch Karl W., Mafi Arash. Transverse Anderson localization in a disordered glass optical fiber. Optical Materials Express. Vol. 2(11)2012. The Optical Society. [Cross Ref]

            98. Maaza M., Mhlungu T., Ndwandwe M.O., Cingo N., Beye A.C., Govindaraj A., Rao C.N.R.. On the possible optical resonance in carbon nanotubes based cavities. International Journal of Nanotechnology. Vol. 4(6)2007. Inderscience Publishers. [Cross Ref]

            99. Maaza M., Rao C. N. R.. Anderson localization of IR light in 1D nanosystems. Journal of the Optical Society of America A. Vol. 37(11)2020. Optica Publishing Group. [Cross Ref]

            100. Govindaraj A., Rao C. N. R.. Organometallic precursor route to carbon nanotubes. Pure and Applied Chemistry. Vol. 74(9):1571–1580. 2002. Walter de Gruyter GmbH. [Cross Ref]

            101. Lummer O., Gehrcke E.. Über die Anwendung der Interferenzen an planparallelen Platten zur Analyse feinster Spektrallinien. Annalen der Physik. Vol. 315(3):457–477. 1903. Wiley. [Cross Ref]

            102. Wiersma Diederik S., Bartolini Paolo, Lagendijk Ad, Righini Roberto. Localization of light in a disordered medium. Nature. Vol. 390(6661):671–673. 1997. Springer Science and Business Media LLC. [Cross Ref]

            103. Chabanov A. A., Genack A. Z.. Statistics of Dynamics of Localized Waves. Physical Review Letters. Vol. 87(23)2001. American Physical Society (APS). [Cross Ref]

            104. Sheng Ping. Mesoscopic PhenomenaIntroduction to Wave Scattering, Localization, and Mesoscopic Phenomena. p. 301–327. 1995. Elsevier. [Cross Ref]

            105. Sánchez-Gil José A., Freilikher Valentin. Local and average fields inside surface-disordered waveguides: Resonances in the one-dimensional Anderson localization regime. Physical Review B. Vol. 68(7)2003. American Physical Society (APS). [Cross Ref]

            106. Bliokh K. Yu., Bliokh Yu. P., Freilikher V. D.. Resonances in one-dimensional disordered systems: localization of energy and resonant transmission. Journal of the Optical Society of America B. Vol. 21(1)2004. The Optical Society. [Cross Ref]

            107. Zhu J. X., Pine D. J., Weitz D. A.. Internal reflection of diffusive light in random media. Physical Review A. Vol. 44(6):3948–3959. 1991. American Physical Society (APS). [Cross Ref]

            108. Steinhauser K. -A., Steyerl A., Scheckenhofer H., Malik S. S.. Observation of Quasibound States of the Neutron in Matter. Physical Review Letters. Vol. 44(20):1306–1309. 1980. American Physical Society (APS). [Cross Ref]

            109. Steyerl A., Ebisawa T., Steinhauser K. -A., Utsuro M.. Experimental study of macroscopic coupled resonators for neutron waves. Zeitschrift f�r Physik B Condensed Matter. Vol. 41(4):283–286. 1981. Springer Science and Business Media LLC. [Cross Ref]

            110. Steyerl A., Drexel W., Malik S.S., Gutsmiedl E.. Neutron resonators and interferometers for very low energy neutrons. Physica B+C. Vol. 151(1-2):36–43. 1988. Elsevier BV. [Cross Ref]

            111. Maaza M., Hamidi D.. Nano-structured Fabry–Pérot resonators in neutron optics &amp; tunneling of neutron wave-particles. Physics Reports. Vol. 514(5):177–198. 2012. Elsevier BV. [Cross Ref]

            112. Maaza M., Pardo B., Chauvineau J.P., Menelle A., Raynal A., Bridou F., Corno J.. Zeeman neutron tunneling in “NiCoNi” thin film resonators. Physics Letters A. Vol. 235(1):19–23. 1997. Elsevier BV. [Cross Ref]

            113. Matiwane A., Sackey J., Lekala M. L., Gibaud A., Maaza M.. Neutron tunneling in nanostructured systems: isotopical effect. MRS Advances. Vol. 3(42-43):2609–2616. 2018. Springer Science and Business Media LLC. [Cross Ref]

            114. Mâaza M., Chernenko L.P., Korneev D., Pardo B., Sella C., Bridou F.. A way to reach high accuracy in the determination of the magnetic London penetration depth in superconductors by polarized neutron reflectometry. Physics Letters A. Vol. 218(3-6):312–318. 1996. Elsevier BV. [Cross Ref]

            115. Maaza M., Menelle A., Chauvineau J.P., Pardo B., Raynal A., Bridou F., Sella C., Megademini T.. Monochromation and apodization with Ti-B4C multilayers in neutron optics. Physica B: Condensed Matter. Vol. 198(1-3):231–234. 1994. Elsevier BV. [Cross Ref]

            116. SHULL C. G.. Single-Slit Diffraction of Neutrons. Physical Review. Vol. 179(3):752–754. 1969. American Physical Society (APS). [Cross Ref]

            117. Maier-Leibnitz H., Springer T.. Ein Interferometer f�r langsame Neutronen. Zeitschrift f�r Physik. Vol. 167(4):386–402. 1962. Springer Science and Business Media LLC. [Cross Ref]

            118. Landkammer Franz Josef. Beugungsversuche mit langsamen Neutronen. Zeitschrift f�r Physik. Vol. 189(2):113–137. 1966. Springer Science and Business Media LLC. [Cross Ref]

            119. Kurz H., Rauch H.. Beugung thermischer Neutronen an einem Strichgitter. Zeitschrift für Physik A Hadrons and nuclei. Vol. 220(5):419–426. 1969. Springer Science and Business Media LLC. [Cross Ref]

            120. Rauch H., Treimer W., Bonse U.. Test of a single crystal neutron interferometer. Physics Letters A. Vol. 47(5):369–371. 1974. Elsevier BV. [Cross Ref]

            121. Schoenborn B. P., Caspar D. L. D., Kammerer O. F.. A novel neutron monochromator. Journal of Applied Crystallography. Vol. 7(5):508–510. 1974. International Union of Crystallography (IUCr). [Cross Ref]

            122. Majkrzak C.F.. Neutron diffraction studies of thin film multilayer structures. Physica B+C. Vol. 136(1-3):69–74. 1986. Elsevier BV. [Cross Ref]

            123. Hayter J. B., Mook H. A.. Discrete thin-film multilayer design for X-ray and neutron supermirrors. Journal of Applied Crystallography. Vol. 22(1):35–41. 1989. International Union of Crystallography (IUCr). [Cross Ref]

            124. Fermi E., Marshall L.. Interference Phenomena of Slow Neutrons. Physical Review. Vol. 71(10):666–677. 1947. American Physical Society (APS). [Cross Ref]

            125. Sears Varley F.. Neutron scattering lengths and cross sections. Neutron News. Vol. 3(3):26–37. 1992. Informa UK Limited. [Cross Ref]

            126. Felcher G. P., Kampwirth R. T., Gray K. E., Felici Roberto. Polarized-Neutron Reflections: A New Technique Used to Measure the Magnetic Field Penetration Depth in Superconducting Niobium. Physical Review Letters. Vol. 52(17):1539–1542. 1984. American Physical Society (APS). [Cross Ref]

            127. Croce P, Pardo B. Sur l'application des couches interf rentielles a l'optique des rayons X et des neutrons. Nouvelle Revue d'Optique Appliquée. Vol. 1(4):229–232. 1970. IOP Publishing. [Cross Ref]

            Comments

            Comment on this article