12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Highly Efficient Xylan-Utilization System in Aspergillus niger An76: A Functional-Proteomics Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Xylan constituted with β-1,4-D-xylose linked backbone and diverse substituted side-chains is the most abundant hemicellulose component of biomass, which can be completely and rapidly degraded into fermentable sugars by Aspergillus niger. This is of great value for obtaining renewable biofuels and biochemicals. To clarify the underlying mechanisms associated with highly efficient xylan degradation, assimilation, and metabolism by A. niger, we utilized functional proteomics to analyze the secreted proteins, sugar transporters, and intracellular proteins of A. niger An76 grown on xylan-based substrates. Results demonstrated that the complete xylanolytic enzyme system required for xylan degradation and composed of diverse isozymes was secreted in a sequential order. Xylan-backbone-degrading enzymes were preferentially induced by xylose or other soluble sugars, which efficiently produced large amounts of xylooligosaccharides (XOS) and xylose; however, XOS was more efficient than xylose in triggering the expression of the key transcription activator XlnR, resulting in higher xylanase activity and shortening xylanase-production time. Moreover, the substituted XOS was responsible for improving the abundance of side-chain-degrading enzymes, specific transporters, and key reductases and dehydrogenases in the pentose catabolic pathway. Our findings indicated that industries might be able to improve the species and concentrations of xylan-degrading enzymes and shorten fermentation time by adding abundant intermediate products of natural xylan (XOS) to cultures of filamentous fungi.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Purification of RNA using TRIzol (TRI reagent).

          TRIzol solubilization and extraction is a relatively recently developed general method for deproteinizing RNA. This method is particularly advantageous in situations where cells or tissues are enriched for endogenous RNases or when separation of cytoplasmic RNA from nuclear RNA is impractical. TRIzol (or TRI Reagent) is a monophasic solution of phenol and guanidinium isothiocyanate that simultaneously solubilizes biological material and denatures protein. After solubilization, the addition of chloroform causes phase separation (much like extraction with phenol:chloroform:isoamyl alcohol), where protein is extracted to the organic phase, DNA resolves at the interface, and RNA remains in the aqueous phase. Therefore, RNA, DNA, and protein can be purified from a single sample (hence, the name TRIzol). TRIzol extraction is also an effective method for isolating small RNAs, such as microRNAs, piwi-associated RNAs, or endogeneous, small interfering RNAs. However, TRIzol is expensive and RNA pellets can be difficult to resuspend. Thus, the use of TRIzol is not recommend when regular phenol extraction is practical.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hemicellulose bioconversion.

            Badal Saha (2003)
            Various agricultural residues, such as corn fiber, corn stover, wheat straw, rice straw, and sugarcane bagasse, contain about 20-40% hemicellulose, the second most abundant polysaccharide in nature. The conversion of hemicellulose to fuels and chemicals is problematic. In this paper, various pretreatment options as well as enzymatic saccharification of lignocellulosic biomass to fermentable sugars is reviewed. Our research dealing with the pretreatment and enzymatic saccharification of corn fiber and development of novel and improved enzymes such as endo-xylanase, beta-xylosidase, and alpha- l-arabinofuranosidase for hemicellulose bioconversion is described. The barriers, progress, and prospects of developing an environmentally benign bioprocess for large-scale conversion of hemicellulose to fuel ethanol, xylitol, 2,3-butanediol, and other value-added fermentation products are highlighted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Optimality and evolutionary tuning of the expression level of a protein.

              Different proteins have different expression levels. It is unclear to what extent these expression levels are optimized to their environment. Evolutionary theories suggest that protein expression levels maximize fitness, but the fitness as a function of protein level has seldom been directly measured. To address this, we studied the lac system of Escherichia coli, which allows the cell to use the sugar lactose for growth. We experimentally measured the growth burden due to production and maintenance of the Lac proteins (cost), as well as the growth advantage (benefit) conferred by the Lac proteins when lactose is present. The fitness function, given by the difference between the benefit and the cost, predicts that for each lactose environment there exists an optimal Lac expression level that maximizes growth rate. We then performed serial dilution evolution experiments at different lactose concentrations. In a few hundred generations, cells evolved to reach the predicted optimal expression levels. Thus, protein expression from the lac operon seems to be a solution of a cost-benefit optimization problem, and can be rapidly tuned by evolution to function optimally in new environments.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                22 March 2018
                2018
                : 9
                : 430
                Affiliations
                [1] 1The State Key Laboratory of Microbial Technology, Shandong University , Jinan, China
                [2] 2State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing, China
                Author notes

                Edited by: Ozgur Bayram, Maynooth University, Ireland

                Reviewed by: Jun-ichi Maruyama, The University of Tokyo, Japan; Steven Singer, Lawrence Berkeley National Laboratory (LBNL), United States

                *Correspondence: Lushan Wang lswang@ 123456sdu.edu.cn

                This article was submitted to Microbial Physiology and Metabolism, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.00430
                5874446
                29403456
                b8f30e88-b992-4877-bbb1-b703d09c2b17
                Copyright © 2018 Gong, Dai, Zhang, Zhang and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 December 2017
                : 26 February 2018
                Page count
                Figures: 6, Tables: 1, Equations: 1, References: 49, Pages: 15, Words: 10257
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                xylan-degrading isoenzyme,sugar transporter,transcription activator xlnr,aspergillus niger an76,xylan

                Comments

                Comment on this article