8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrin-independent support of cancer drug resistance by tetraspanin CD151

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tetraspanin protein CD151 has typically been studied as binding partner and functional regulator of laminin-binding integrins. However, we show here that CD151 supports anti-cancer drug resistance independent of integrins. CD151 ablation sensitized multiple tumor cell types to several anti-cancer drugs (e.g., gefitinib and camptothecin), thus increasing apoptosis, as seen using cleaved caspase-3, cleaved PARP (poly (ADP-ribose) polymerase), annexin V, and propidium iodide staining assays. Drug sensitization due to CD151 ablation is integrin-independent, because, (1) effects occurred in cells when integrins were unengaged with ligand, (2) integrin ablation (α3 and α6 subunits) did not mimic effects of CD151 ablation, (3) the CD151 QRD mutant, with diminished integrin association, and CD151 WT (unmutated CD151) similarly reconstituted drug protection, and (4) treatment with anti-cancer drugs selectively upregulated intracellular nonintegrin-associated CD151 (NIA-CD151), consistent with its role in drug resistance. Together, these results suggest that upregulated CD151 expression may support not only typical integrin-dependent functions, but also integrin-independent survival of circulating (and possibly metastatic) cancer cells during anti-cancer drug therapy.

          Electronic supplementary material

          The online version of this article (10.1007/s00018-019-03014-7) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references 31

          • Record: found
          • Abstract: found
          • Article: not found

          Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes.

          Phorbol ester treatment of quiescent Swiss 3T3 cells leads to cell proliferation, a response thought to be mediated by protein kinase C (PKC), the major cellular receptor for this class of agents. We demonstrate here that this proliferation is dependent on the activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) cascade. It is shown that dominant-negative PKC-alpha inhibits stimulation of the ERK/MAPK pathway by phorbol esters in Cos-7 cells, demonstrating a role for PKC in this activation. To assess the potential specificity of PKC isotypes mediating this process, constitutively active mutants of six PKC isotypes (alpha, beta, delta, epsilon, eta, and zeta) were employed. Transient transfection of these PKC mutants into Cos-7 cells showed that members of all three groups of PKC (conventional, novel, and atypical) are able to activate p42 MAPK as well as its immediate upstream activator, the MAPK/ERK kinase MEK-1. At the level of Raf, the kinase that phosphorylates MEK-1, the activation cascade diverges; while conventional and novel PKCs (isotypes alpha and eta) are potent activators of c-Raf1, atypical PKC-zeta cannot increase c-Raf1 activity, stimulating MEK by an independent mechanism. Stimulation of c-Raf1 by PKC-alpha and PKC-eta was abrogated for RafCAAX, which is a membrane-localized, partially active form of c-Raf1. We further established that activation of Raf is independent of phosphorylation at serine residues 259 and 499. In addition to activation, we describe a novel Raf desensitization induced by PKC-alpha, which acts to prevent further Raf stimulation by growth factors. The results thus demonstrate a necessary role for PKC and p42 MAPK activation in 12-O-tetradecanoylphorbol-13-acetate induced mitogenesis and provide evidence for multiple PKC controls acting on this MAPK cascade.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis.

            A mutation was targeted to the murine alpha3 integrin gene. Homozygous mutant mice survived to birth, but died during the neonatal period. The mutation caused abnormal kidney and lung development. Mutant kidneys displayed decreased branching of the medullary collecting ducts, although the number of nephrons was not altered. Proximal tubules exhibited two distinct subsets of abnormalities, with the epithelial cells either containing excess lysosomes or becoming microcystic. In addition, glomerular development was markedly affected. In mutant kidneys, the extent of branching of glomerular capillary loops was decreased, with capillary lumina being wider than normal. The glomerular basement membrane was disorganized and glomerular podocytes were unable to form mature foot processes. Branching of the bronchi in lungs of mutant mice was also decreased and the large bronchi extended to the periphery. These results indicate a role for integrin receptors in basement membrane organization and branching morphogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins.

              Translocation of conventional protein kinases C (PKCs) to the plasma membrane leads to their specific association with transmembrane-4 superfamily (TM4SF; tetraspanin) proteins (CD9, CD53, CD81, CD82, and CD151), as demonstrated by reciprocal co-immunoprecipitation and covalent cross-linking experiments. Although formation and maintenance of TM4SF-PKC complexes are not dependent on integrins, TM4SF proteins can act as linker molecules, recruiting PKC into proximity with specific integrins. Previous studies showed that the extracellular large loop of TM4SF proteins determines integrin associations. In contrast, specificity for PKC association probably resides within cytoplasmic tails or the first two transmembrane domains of TM4SF proteins, as seen from studies with chimeric CD9 molecules. Consistent with a TM4SF linker function, only those integrins (alpha(3)beta(1), alpha(6)beta(1), and a chimeric "X3TC5" alpha(3) mutant) that associated strongly with tetraspanins were found in association with PKC. We propose that PKC-TM4SF-integrin structures represent a novel type of signaling complex. The simultaneous binding of TM4SF proteins to the extracellular domains of the integrin alpha(3) subunit and to intracellular PKC helps to explain why the integrin alpha3 extracellular domain is needed for both intracellular PKC recruitment and PKC-dependent phosphorylation of the alpha(3) integrin cytoplasmic tail.
                Bookmark

                Author and article information

                Contributors
                617-632-3410 , martin_hemler@dfci.harvard.edu
                Journal
                Cell Mol Life Sci
                Cell. Mol. Life Sci
                Cellular and Molecular Life Sciences
                Springer International Publishing (Cham )
                1420-682X
                1420-9071
                18 February 2019
                18 February 2019
                2019
                : 76
                : 8
                : 1595-1604
                Affiliations
                [1 ]ISNI 0000 0001 2106 9910, GRID grid.65499.37, Department of Cancer Immunology and Virology, Rm SM-520C, , Dana-Farber Cancer Institute, ; 450 Brookline Ave, Boston, MA 02215 USA
                [2 ]Present Address: Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center 1180 Nagasone-cho, Kita-ku, Sakai, Osaka 591-8555 Japan
                Article
                3014
                10.1007/s00018-019-03014-7
                6439156
                30778617
                © The Author(s) 2019

                OpenAccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000009, Foundation for the National Institutes of Health;
                Award ID: CA42368
                Award Recipient :
                Categories
                Original Article
                Custom metadata
                © Springer Nature Switzerland AG 2019

                Molecular biology

                cd151, integrins, drug resistance, apoptosis

                Comments

                Comment on this article