168
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic Detection and Characterization of Lujo Virus, a New Hemorrhagic Fever–Associated Arenavirus from Southern Africa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lujo virus (LUJV), a new member of the family Arenaviridae and the first hemorrhagic fever–associated arenavirus from the Old World discovered in three decades, was isolated in South Africa during an outbreak of human disease characterized by nosocomial transmission and an unprecedented high case fatality rate of 80% (4/5 cases). Unbiased pyrosequencing of RNA extracts from serum and tissues of outbreak victims enabled identification and detailed phylogenetic characterization within 72 hours of sample receipt. Full genome analyses of LUJV showed it to be unique and branching off the ancestral node of the Old World arenaviruses. The virus G1 glycoprotein sequence was highly diverse and almost equidistant from that of other Old World and New World arenaviruses, consistent with a potential distinctive receptor tropism. LUJV is a novel, genetically distinct, highly pathogenic arenavirus.

          Author Summary

          In September and October 2008, five cases of undiagnosed hemorrhagic fever, four of them fatal, were recognized in South Africa after air transfer of a critically ill index case from Zambia. Serum and tissue samples from victims were subjected to unbiased pyrosequencing, yielding within 72 hours of sample receipt, multiple discrete sequence fragments that represented approximately 50% of a prototypic arenavirus genome. Thereafter, full genome sequence was generated by PCR amplification of intervening fragments using specific primers complementary to sequence obtained by pyrosequencing and a universal primer targeting the conserved arenaviral termini. Phylogenetic analyses confirmed the presence of a new member of the family Arenaviridae, provisionally named Lujo virus (LUJV) in recognition of its geographic origin (Lusaka, Zambia, and Johannesburg, South Africa). Our findings enable the development of specific reagents to further investigate the reservoir, geographic distribution, and unusual pathogenicity of LUJV, and confirm the utility of unbiased high throughput pyrosequencing for pathogen discovery and public health.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment.

          S. KUMAR (2004)
          With its theoretical basis firmly established in molecular evolutionary and population genetics, the comparative DNA and protein sequence analysis plays a central role in reconstructing the evolutionary histories of species and multigene families, estimating rates of molecular evolution, and inferring the nature and extent of selective forces shaping the evolution of genes and genomes. The scope of these investigations has now expanded greatly owing to the development of high-throughput sequencing techniques and novel statistical and computational methods. These methods require easy-to-use computer programs. One such effort has been to produce Molecular Evolutionary Genetics Analysis (MEGA) software, with its focus on facilitating the exploration and analysis of the DNA and protein sequence variation from an evolutionary perspective. Currently in its third major release, MEGA3 contains facilities for automatic and manual sequence alignment, web-based mining of databases, inference of the phylogenetic trees, estimation of evolutionary distances and testing evolutionary hypotheses. This paper provides an overview of the statistical methods, computational tools, and visual exploration modules for data input and the results obtainable in MEGA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia.

            Two new methods were used to establish a rapid and highly sensitive prenatal diagnostic test for sickle cell anemia. The first involves the primer-mediated enzymatic amplification of specific beta-globin target sequences in genomic DNA, resulting in the exponential increase (220,000 times) of target DNA copies. In the second technique, the presence of the beta A and beta S alleles is determined by restriction endonuclease digestion of an end-labeled oligonucleotide probe hybridized in solution to the amplified beta-globin sequences. The beta-globin genotype can be determined in less than 1 day on samples containing significantly less than 1 microgram of genomic DNA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of four conserved motifs among the RNA-dependent polymerase encoding elements.

              Four consensus sequences are conserved with the same linear arrangement in RNA-dependent DNA polymerases encoded by retroid elements and in RNA-dependent RNA polymerases encoded by plus-, minus- and double-strand RNA viruses. One of these motifs corresponds to the YGDD span previously described by Kamer and Argos (1984). These consensus sequences altogether lead to 4 strictly and 18 conservatively maintained amino acids embedded in a large domain of 120 to 210 amino acids. As judged from secondary structure predictions, each of the 4 motifs, which may cooperate to form a well-ordered domain, places one invariant amino acid in or proximal to turn structures that may be crucial for their correct positioning in a catalytic process. We suggest that this domain may constitute a prerequisite 'polymerase module' implicated in template seating and polymerase activity. At the evolutionary level, the sequence similarities, gap distribution and distances between each motif strongly suggest that the ancestral polymerase module was encoded by an individual genetic element which was most closely related to the plus-strand RNA viruses and the non-viral retroposons. This polymerase module gene may have subsequently propagated in the viral kingdom by distinct gene set recombination events leading to the wide viral variety observed today.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2009
                May 2009
                29 May 2009
                : 5
                : 5
                : e1000455
                Affiliations
                [1 ]Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
                [2 ]Special Pathogens Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
                [3 ]Special Pathogens Branch, Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
                [4 ]454 Life Sciences, Branford, Connecticut, United States of America
                [5 ]Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
                University of California Irvine, United States of America
                Author notes

                Conceived and designed the experiments: TB WIL. Performed the experiments: TB JTP LKM SKH GP MLK JW. Analyzed the data: TB LKM SKH CS GP MLK ME STN WIL. Contributed reagents/materials/analysis tools: JTP CS JW BS ME. Wrote the paper: TB JTP BS STN WIL.

                Article
                09-PLPA-RA-0254R1
                10.1371/journal.ppat.1000455
                2680969
                19478873
                b8fc0532-c72d-49e3-92cf-ae5f46e6b5e4
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 23 February 2009
                : 28 April 2009
                Page count
                Pages: 8
                Categories
                Research Article
                Infectious Diseases/Viral Infections
                Public Health and Epidemiology/Epidemiology
                Public Health and Epidemiology/Infectious Diseases
                Public Health and Epidemiology/Nosocomial and Healthcare-Associated Infections
                Virology/Diagnosis
                Virology/Emerging Viral Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article