Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

*

Mediators of Inflammation

Hindawi Publishing Corporation

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed.

      Related collections

      Most cited references 218

      • Record: found
      • Abstract: found
      • Article: not found

      Macrophage plasticity and polarization: in vivo veritas.

      Diversity and plasticity are hallmarks of cells of the monocyte-macrophage lineage. In response to IFNs, Toll-like receptor engagement, or IL-4/IL-13 signaling, macrophages undergo M1 (classical) or M2 (alternative) activation, which represent extremes of a continuum in a universe of activation states. Progress has now been made in defining the signaling pathways, transcriptional networks, and epigenetic mechanisms underlying M1-M2 or M2-like polarized activation. Functional skewing of mononuclear phagocytes occurs in vivo under physiological conditions (e.g., ontogenesis and pregnancy) and in pathology (allergic and chronic inflammation, tissue repair, infection, and cancer). However, in selected preclinical and clinical conditions, coexistence of cells in different activation states and unique or mixed phenotypes have been observed, a reflection of dynamic changes and complex tissue-derived signals. The identification of mechanisms and molecules associated with macrophage plasticity and polarized activation provides a basis for macrophage-centered diagnostic and therapeutic strategies.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes.

        Mononuclear phagocytes are versatile cells that can express different functional programs in response to microenvironmental signals. Fully polarized M1 and M2 (or alternatively activated) macrophages are the extremes of a continuum of functional states. Macrophages that infiltrate tumor tissues are driven by tumor-derived and T cell-derived cytokines to acquire a polarized M2 phenotype. These functionally polarized cells, and similarly oriented or immature dendritic cells present in tumors, have a key role in subversion of adaptive immunity and in inflammatory circuits that promote tumor growth and progression.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The M1 and M2 paradigm of macrophage activation: time for reassessment

          Macrophages are endowed with a variety of receptors for lineage-determining growth factors, T helper (Th) cell cytokines, and B cell, host, and microbial products. In tissues, macrophages mature and are activated in a dynamic response to combinations of these stimuli to acquire specialized functional phenotypes. As for the lymphocyte system, a dichotomy has been proposed for macrophage activation: classic vs. alternative, also M1 and M2, respectively. In view of recent research about macrophage functions and the increasing number of immune-relevant ligands, a revision of the model is needed. Here, we assess how cytokines and pathogen signals influence their functional phenotypes and the evidence for M1 and M2 functions and revisit a paradigm initially based on the role of a restricted set of selected ligands in the immune response.
            Bookmark

            Author and article information

            Affiliations
            Institute for Comparative Molecular Endocrinology, Center of Biomedical Research, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
            Author notes

            Academic Editor: Yona Keisari

            Journal
            Mediators Inflamm
            Mediators Inflamm
            MI
            Mediators of Inflammation
            Hindawi Publishing Corporation
            0962-9351
            1466-1861
            2015
            18 May 2015
            : 2015
            4452191
            10.1155/2015/816460
            Copyright © 2015 Tamás Rőszer.

            This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Categories
            Review Article

            Immunology

            Comments

            Comment on this article