40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanomaterials as Delivery Vehicles and Components of New Strategies to Combat Bacterial Infections: Advantages and Limitations

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Life-threatening bacterial infections have been well-controlled by antibiotic therapies and this approach has greatly improved the health and lifespan of human beings. However, the rapid and worldwide emergence of multidrug resistant (MDR) bacteria has forced researchers to find alternative treatments for MDR infections as MDR bacteria can sometimes resist all the present day antibiotic therapies. In this respect, nanomaterials have emerged as innovative antimicrobial agents that can be a potential solution against MDR bacteria. The present review discusses the advantages of nanomaterials as potential medical means and carriers of antibacterial activity, the types of nanomaterials used for antibacterial agents, strategies to tackle toxicity of nanomaterials for clinical applications, and limitations which need extensive studies to overcome. The current progress of using different types of nanomaterials, including new emerging strategies for the single purpose of combating bacterial infections, is also discussed in detail.

          Related collections

          Most cited references141

          • Record: found
          • Abstract: found
          • Article: not found

          Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism

          Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. ZnO-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. ZnO is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination, ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH− (hydroxyl radicals), and O2 −2 (peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to ZnO-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions. These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on ZnO abrasive surface texture. One functional application of the ZnO antibacterial bioactivity was discussed in food packaging industry where ZnO-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of ZnO-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.
            • Record: found
            • Abstract: found
            • Article: not found

            Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli.

            In this work we investigated the antibacterial properties of differently shaped silver nanoparticles against the gram-negative bacterium Escherichia coli, both in liquid systems and on agar plates. Energy-filtering transmission electron microscopy images revealed considerable changes in the cell membranes upon treatment, resulting in cell death. Truncated triangular silver nanoplates with a {111} lattice plane as the basal plane displayed the strongest biocidal action, compared with spherical and rod-shaped nanoparticles and with Ag(+) (in the form of AgNO(3)). It is proposed that nanoscale size and the presence of a {111} plane combine to promote this biocidal property. To our knowledge, this is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and our results demonstrate that silver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Metal nanoparticles: understanding the mechanisms behind antibacterial activity

              As the field of nanomedicine emerges, there is a lag in research surrounding the topic of nanoparticle (NP) toxicity, particularly concerned with mechanisms of action. The continuous emergence of bacterial resistance has challenged the research community to develop novel antibiotic agents. Metal NPs are among the most promising of these because show strong antibacterial activity. This review summarizes and discusses proposed mechanisms of antibacterial action of different metal NPs. These mechanisms of bacterial killing include the production of reactive oxygen species, cation release, biomolecule damages, ATP depletion, and membrane interaction. Finally, a comprehensive analysis of the effects of NPs on the regulation of genes and proteins (transcriptomic and proteomic) profiles is discussed.

                Author and article information

                Journal
                Microorganisms
                Microorganisms
                microorganisms
                Microorganisms
                MDPI
                2076-2607
                16 September 2019
                September 2019
                : 7
                : 9
                : 356
                Affiliations
                Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
                Author notes
                Author information
                https://orcid.org/0000-0002-1837-5412
                https://orcid.org/0000-0003-3703-5461
                Article
                microorganisms-07-00356
                10.3390/microorganisms7090356
                6780078
                31527443
                b90d5ab7-3548-404f-b636-77837c219346
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 June 2019
                : 14 September 2019
                Categories
                Review

                multidrug resistant bacteria,antibiotic resistance,nanomaterials,antibiotic alternatives,nanoparticles,biocompatibility,functionalization

                Comments

                Comment on this article

                Related Documents Log