+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Discovery and evaluation of asymmetrical monocarbonyl analogs of curcumin as anti-inflammatory agents

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Sepsis is a systemic inflammatory response syndrome and is mainly caused by lipopolysaccharides (LPS) – a component of the cell walls of gram-negative bacteria, via toll-like receptor 4–mitogen-activated protein kinases/nuclear factor-kappa B-dependent proinflammatory signaling pathway. Here, we synthesized 26 asymmetric monocarbonyl analogs of curcumin and evaluated their anti-inflammatory activity by inhibiting the LPS-induced secretion of tumor necrosis factor-α and interleukin-6 in mouse RAW264.7 macrophages. Five active compounds (3a, 3c, 3d, 3j, and 3l) exhibited dose-dependent inhibition against the release of tumor necrosis factor-α and interleukin-6, and they also showed much higher chemical stability than curcumin in vitro. The anti-inflammatory activity of analogs 3a and 3c may be associated with their inhibition of the phosphorylation of extracellular signal-regulated kinase and the activation of nuclear factor-kappa B. In addition, 3c exhibited significant protection against LPS-induced septic death in vivo. These results indicate that asymmetrical monocarbonyl curcumin analogs may be utilized as candidates for the treatment of acute inflammatory diseases.

          Related collections

          Most cited references 19

          • Record: found
          • Abstract: found
          • Article: not found

          Oscillations in NF-kappaB signaling control the dynamics of gene expression.

          Signaling by the transcription factor nuclear factor kappa B (NF-kappaB) involves its release from inhibitor kappa B (IkappaB) in the cytosol, followed by translocation into the nucleus. NF-kappaB regulation of IkappaBalpha transcription represents a delayed negative feedback loop that drives oscillations in NF-kappaB translocation. Single-cell time-lapse imaging and computational modeling of NF-kappaB (RelA) localization showed asynchronous oscillations following cell stimulation that decreased in frequency with increased IkappaBalpha transcription. Transcription of target genes depended on oscillation persistence, involving cycles of RelA phosphorylation and dephosphorylation. The functional consequences of NF-kappaB signaling may thus depend on number, period, and amplitude of oscillations.
            • Record: found
            • Abstract: found
            • Article: not found

            Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity.

            Obesity is a major risk factor for the development of type 2 diabetes, and both conditions are now recognized to possess significant inflammatory components underlying their pathophysiologies. We tested the hypothesis that the plant polyphenolic compound curcumin, which is known to exert potent antiinflammatory and antioxidant effects, would ameliorate diabetes and inflammation in murine models of insulin-resistant obesity. We found that dietary curcumin admixture ameliorated diabetes in high-fat diet-induced obese and leptin-deficient ob/ob male C57BL/6J mice as determined by glucose and insulin tolerance testing and hemoglobin A1c percentages. Curcumin treatment also significantly reduced macrophage infiltration of white adipose tissue, increased adipose tissue adiponectin production, and decreased hepatic nuclear factor-kappaB activity, hepatomegaly, and markers of hepatic inflammation. We therefore conclude that orally ingested curcumin reverses many of the inflammatory and metabolic derangements associated with obesity and improves glycemic control in mouse models of type 2 diabetes. This or related compounds warrant further investigation as novel adjunctive therapies for type 2 diabetes in man.
              • Record: found
              • Abstract: found
              • Article: not found

              Protection from lethal gram-negative bacterial sepsis by targeting Toll-like receptor 4.

              Toll-like receptor 4 (TLR4), the signal-transducing molecule of the LPS receptor complex, plays a fundamental role in the sensing of LPS from gram-negative bacteria. Activation of TLR4 signaling pathways by LPS is a critical upstream event in the pathogenesis of gram-negative sepsis, making TLR4 an attractive target for novel antisepsis therapy. To validate the concept of TLR4-targeted treatment strategies in gram-negative sepsis, we first showed that TLR4(-/-) and myeloid differentiation primary response gene 88 (MyD88)(-/-) mice were fully resistant to Escherichia coli-induced septic shock, whereas TLR2(-/-) and wild-type mice rapidly died of fulminant sepsis. Neutralizing anti-TLR4 antibodies were then generated using a soluble chimeric fusion protein composed of the N-terminal domain of mouse TLR4 (amino acids 1-334) and the Fc portion of human IgG1. Anti-TLR4 antibodies inhibited intracellular signaling, markedly reduced cytokine production, and protected mice from lethal endotoxic shock and E. coli sepsis when administered in a prophylactic and therapeutic manner up to 13 h after the onset of bacterial sepsis. These experimental data provide strong support for the concept of TLR4-targeted therapy for gram-negative sepsis.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Dove Medical Press
                04 April 2014
                : 8
                : 373-382
                [1 ]School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, People’s Republic of China
                [2 ]Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, People’s Republic of China
                Author notes

                *These authors contributed equally to this work

                Correspondence: Guang Liang, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, People’s Republic of China, Tel +86 577 866 993 96, Fax +86 577 866 993 96, Email wzmcliangguang@ 123456163.com
                Shulin Yang, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, Jiangsu 210094, People’s Republic of China, Tel +86 25 8431 5945, Email bioshuliny@ 123456yahoo.com.cn
                © 2014 Zhang et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Original Research


                Comment on this article