Blog
About

9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genetic adaptive neural network to predict biochemical failure after radical prostatectomy: a multi-institutional study.

      Molecular biology

      blood, Aged, Prostatectomy, Prostate-Specific Antigen, Prognosis, Predictive Value of Tests, Neural Networks (Computer), Neoplasm Recurrence, Local, Models, Genetic, Male, Humans, Follow-Up Studies, surgery, Prostatic Neoplasms

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite many new procedures, radical prostatectomy remains one of the commonest methods of treating clinically localized prostate cancer. Both from the physician's and the patient's point of view, it is important to have objective estimation of the likelihood of recurrence, which forms the foundation for treatment selection for an individual patient. Currently, it is difficult to predict the probability of biochemical recurrence (rising serum prostate specific antigen [PSA] concentration) in an individual patient, and approximately 30% of the patients do experience recurrence. Tools predicting the recurrence will be of immense practical utility in the treatment selection and planning follow up. We have utilized preoperative parameters through a computer based genetic adaptive neural network model to predict recurrence in such patients, which can help primary care physicians and urologists in making management recommendations. Fourteen hundred patients who underwent radical prostatectomy at participating institutions form the subjects of this study. Demographic data such as age, race, preoperative PSA, systemic biopsy based staging and Gleason scores were used to construct a neural network model. This model simulated the functioning of a trained human mind and learned from the database. Once trained, it was used to predict the outcomes in new patients. The patients in this comprehensive database were representative of the average prostate cancer patients as seen in USA. Their mean age was 68.4 years, the mean PSA concentration before surgery was 11.6 ng/mL, and 67% patients had a Gleason sum of 5 to 7. The mean length of follow-up was 41.5 months. Eighty percent of the cancers were clinical stage T2 and 5% T3. In our series, 64% of patients had pathologically organ-confined cancer, 33% positive margins, and 14% had seminal vesicle invasion. Lymph node positive patients were not included in this series. Progression as judged by serum PSA was noted in 30.6%. With entry of a few routinely used parameters, the model could correctly predict recurrence in 76% of the patients in the validation set. The area under the curve was 0.831. The sensitivity was 85%, the specificity 74%, the positive predictive value 77%, and the negative predictive value of 83%. It was possible to predict PSA recurrence with a high accuracy (76%). Physicians desiring objective treatment counseling can use this model, and significant cost savings are anticipated because of appropriate treatment selection and patient-specific follow-up protocols. This technology can be extended to other treatments such as watchful waiting, external-beam radiation, and brachytherapy.

          Related collections

          Author and article information

          Journal
          10.1089/10915360152745849
          11790278

          Comments

          Comment on this article