4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Frameshift Stimulatory Signal of Human Immunodeficiency Virus Type 1 Group O is a Pseudoknot

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human immunodeficiency virus type 1 (HIV-1) requires a programmed −1 ribosomal frameshift to produce Gag–Pol, the precursor of its enzymatic activities. This frameshift occurs at a slippery sequence on the viral messenger RNA and is stimulated by a specific structure, downstream of the shift site. While in group M, the most abundant HIV-1 group, the frameshift stimulatory signal is an extended bulged stem-loop, we show here, using a combination of mutagenesis and probing studies, that it is a pseudoknot in group O. The mutagenesis and probing studies coupled to an in silico analysis show that group O pseudoknot is a hairpin-type pseudoknot with two coaxially stacked stems of eight base-pairs (stem 1 and stem 2), connected by single-stranded loops of 2 nt (loop 1) and 20 nt (loop 2). Mutations impairing formation of stem 1 or stem 2 of the pseudoknot reduce frameshift efficiency, whereas compensatory changes that allow re-formation of these stems restore the frameshift efficiency to near wild-type level. The difference between the frameshift stimulatory signal of group O and group M supports the hypothesis that these groups originate from a different monkey to human transmission.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation.

          DNA-calcium phosphate co-precipitates arise spontaneously in supersaturated solutions. Highly effective precipitates for transfection purposes, however, can be generated only in a very narrow range of physico-chemical conditions that control the initiation and growth of precipitate complexes. The concentrations of calcium and phosphate are the main factors influencing characteristics of the precipitate complex, but other parameters, such as temperature, DNA concentration and reaction time are important as well. An example for this is the finding that almost all of the soluble DNA in the reaction mix can be bound into an insoluble complex with calcium phosphate in <1 min. Extending the reaction time to 20 min results in aggregation and/or growth of particles and reduces the level of expression. With improved protocols we gained better reproducibility and higher efficiencies both for transient and for stable transfections. Up to 60% of cells stained positive for beta-gal and transient production of secreted proteins was improved 5- to 10-fold over results seen with transfections using standard procedures. Similar improvements in efficiency (number of recombinant cell colonies) were observed with stable transfections, using co-transfected marker plasmids for selection. Transient expression levels 2 days after DNA transfer and titers obtained from stable cell lines, emerging weeks later, showed strong correlation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of a new human immunodeficiency virus type 1 distinct from group M and group O.

            A highly divergent HIV-1 isolate, designated YBF 30, was obtained in 1995 from a 40-year-old Cameroonian woman with AIDS. Depending on the genes studied, phylogenetic analysis showed that YBF30 branched either with SIVcpz-gab or between SIVcpz-gab and HIV-1 group M. The structural genes and tat, vpr, and nef of YBF30 are approximately equidistant from those of HIV-1 group M and SIVcpz-gab. In contrast, vif and rev are closer to HIV-1 group M, and vpu is highly divergent. Using a YBF30 V3 loop peptide enzyme immunoassay, we screened 700 HIV-1-positive sera collected in Cameroon; three reacted strongly with the YBF30 peptides and one was confirmed as being related to YBF30 by genetic analysis of a pol fragment. YBF30 is as distinct from SIVcpz-gab as it is from HIV-1 group M and can thus be considered as the prototype strain of a new human immunodeficiency virus group.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting 1

              Programmed −1 ribosomal frameshifting has become the subject of increasing interest over the last several years, due in part to the ubiquitous nature of this translational recoding mechanism in pathogenic animal and plant viruses. All cis-acting frameshift signals encoded in mRNAs are minimally composed of two functional elements: a heptanucleotide “slippery sequence” conforming to the general form X XXY YYZ, followed by an RNA structural element, usually an H-type RNA pseudoknot, positioned an optimal number of nucleotides (5 to 9) downstream. The slippery sequence itself promotes a low level (≈1 %) of frameshifting; however, downstream pseudoknots stimulate this process significantly, in some cases up to 30 to 50 %. Although the precise molecular mechanism of stimulation of frameshifting remains poorly understood, significant advances have been made in our knowledge of the three-dimensional structures, thermodynamics of folding, and functional determinants of stimulatory RNA pseudoknots derived from the study of several well-characterized frameshift signals. These studies are summarized here and provide new insights into the structural requirements and mechanism of programmed −1 ribosomal frameshifting.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Mol Biol
                J. Mol. Biol
                Journal of Molecular Biology
                Elsevier Ltd.
                0022-2836
                1089-8638
                29 July 2003
                15 August 2003
                29 July 2003
                : 331
                : 3
                : 571-583
                Affiliations
                Département de Biochimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Qué., Canada H3T 1J4
                Author notes
                Article
                S0022-2836(03)00784-8
                10.1016/S0022-2836(03)00784-8
                7127721
                12899829
                b9153dcb-86d6-4762-a93a-73e997f4703c
                Copyright © 2003 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 25 April 2003
                : 11 June 2003
                : 12 June 2003
                Categories
                Article

                Molecular biology
                human immunodeficiency virus type 1,hiv-1 group o,ribosomal frameshifting,rna structure,rna pseudoknot,bwyv, beet western yellow virus,cmv, cytomegalovirus,hiv-1, human immunodeficiency virus type 1,ibv, infectious bronchitis virus,luc, firefly luciferase,mmtv, mouse mammary tumor virus,pcr, polymerase chain reaction,rrl, rabbit reticulocyte lysate,rsv, rous sarcoma virus,srv-1, simian retrovirus-1,tfp, gag–pol transframe protein

                Comments

                Comment on this article