5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dual transcriptomics reveals co-evolutionary mechanisms of intestinal parasite infections in blue mussels Mytilus edulis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          On theoretical grounds, antagonistic co-evolution between hosts and their parasites should be a widespread phenomenon but only received little empirical support so far. Consequently, the underlying molecular mechanisms and evolutionary steps remain elusive, especially in nonmodel systems. Here, we utilized the natural history of invasive parasites to document the molecular underpinnings of co-evolutionary trajectories. We applied a dual-species transcriptomics approach to experimental cross-infections of blue mussel Mytilus edulis hosts and their invasive parasitic copepods Mytilicola intestinalis from two invasion fronts in the Wadden Sea. We identified differentially regulated genes from an experimental infection contrast for hosts (infected vs. control) and a sympatry contrast (sympatric vs. allopatric combinations) for both hosts and parasites. The damage incurred by Mytilicola infection and the following immune response of the host were mainly reflected in cell division processes, wound healing, apoptosis and the production of reactive oxygen species (ROS). Furthermore, the functional coupling of host and parasite sympatry contrasts revealed the concerted regulation of chitin digestion by a Chitotriosidase 1 homolog in hosts with several cuticle proteins in the parasite. Together with the coupled regulation of ROS producers and antagonists, these genes represent candidates that mediate the different evolutionary trajectories within the parasite's invasion. The host-parasite combination-specific coupling of these effector mechanisms suggests that underlying recognition mechanisms create specificity and local adaptation. In this way, our study demonstrates the use of invasive species' natural history to elucidate molecular mechanisms of host-parasite co-evolution in the wild.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Host-parasite 'Red Queen' dynamics archived in pond sediment.

            Antagonistic interactions between hosts and parasites are a key structuring force in natural populations, driving coevolution. However, direct empirical evidence of long-term host-parasite coevolution, in particular 'Red Queen' dynamics--in which antagonistic biotic interactions such as host-parasite interactions can lead to reciprocal evolutionary dynamics--is rare, and current data, although consistent with theories of antagonistic coevolution, do not reveal the temporal dynamics of the process. Dormant stages of both the water flea Daphnia and its microparasites are conserved in lake sediments, providing an archive of past gene pools. Here we use this fact to reconstruct rapid coevolutionary dynamics in a natural setting and show that the parasite rapidly adapts to its host over a period of only a few years. A coevolutionary model based on negative frequency-dependent selection, and designed to mimic essential aspects of our host-parasite system, corroborated these experimental results. In line with the idea of continuing host-parasite coevolution, temporal variation in parasite infectivity changed little over time. In contrast, from the moment the parasite was first found in the sediments, we observed a steady increase in virulence over time, associated with higher fitness of the parasite.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antagonistic coevolution between a bacterium and a bacteriophage.

              Antagonistic coevolution between hosts and parasites is believed to play a pivotal role in host and parasite population dynamics, the evolutionary maintenance of sex and the evolution of parasite virulence. Furthermore, antagonistic coevolution is believed to be responsible for rapid differentiation of both hosts and parasites between geographically structured populations. Yet empirical evidence for host-parasite antagonistic coevolution, and its impact on between-population genetic divergence, is limited. Here we demonstrate a long-term arms race between the infectivity of a viral parasite (bacteriophage; phage) and the resistance of its bacterial host. Coevolution was largely driven by directional selection, with hosts becoming resistant to a wider range of parasite genotypes and parasites infective to a wider range of host genotypes. Coevolution followed divergent trajectories between replicate communities despite establishment with isogenic bacteria and phage, and resulted in bacteria adapted to their own, compared with other, phage populations.
                Bookmark

                Author and article information

                Journal
                Molecular Ecology
                Mol Ecol
                Wiley
                09621083
                March 2018
                March 2018
                March 23 2018
                : 27
                : 6
                : 1505-1519
                Affiliations
                [1 ]Department Coastal Ecology; Wadden Sea Station Sylt; Alfred Wegener Institute; Helmholtz Centre for Polar and Marine Research; List/Sylt Germany
                [2 ]Department Ecological Chemistry; Alfred Wegener Institute; Helmholtz Centre for Polar and Marine Research; Bremerhaven Germany
                [3 ]Helmholtz Institute for Functional Marine Biodiversity (HIFMB); Oldenburg Germany
                [4 ]NIOZ Royal Netherlands Institute for Sea Research; Department of Coastal Systems, and Utrecht University; Den Burg The Netherlands
                Article
                10.1111/mec.14541
                29453888
                b91de977-ef1d-4848-bc48-e116f74478a5
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article