+1 Recommend
2 collections
      • Record: found
      • Abstract: found
      • Article: found

      Continuous Renal Replacement Therapy for a Patient with Severe COVID-19

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The outbreak of coronavirus disease 2019 (COVID-19) is a global health threat. It is a respiratory disease, and acute kidney injury (AKI) is rare; however, if a patient develops severe AKI, renal replacement therapy (RRT) should be considered. Recently, we had a critically ill COVID-19 patient who developed severe AKI and needed continuous RRT (CRRT). To avoid the potential risk of infection from CRRT effluents, we measured severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic material in the effluents by qRT-PCR, and low copy numbers of the viral genome were detected. Due to unstable hemodynamic status in critically ill patients, CRRT should be the first choice for severe AKI in COVID-19 patients. We suggest prevention of clinical infection and control during administration of RRT in the acute phase of COVID-19 patients with AKI or multiple organ failure.

          Related collections

          Most cited references 5

          • Record: found
          • Abstract: found
          • Article: not found

          Successful delivery of RRT in Ebola virus disease.

          AKI has been observed in cases of Ebola virus disease. We describe the protocol for the first known successful delivery of RRT with subsequent renal recovery in a patient with Ebola virus disease treated at Emory University Hospital, in Atlanta, Georgia. Providing RRT in Ebola virus disease is complex and requires meticulous attention to safety for the patient, healthcare workers, and the community. We specifically describe measures to decrease the risk of transmission of Ebola virus disease and report pilot data demonstrating no detectable Ebola virus genetic material in the spent RRT effluent waste. This article also proposes clinical practice guidelines for acute RRT in Ebola virus disease. Copyright © 2015 by the American Society of Nephrology.
            • Record: found
            • Abstract: found
            • Article: not found

            Continuous hemodiafiltration with PMMA Hemofilter in the treatment of patients with septic shock.

            Septic shock is the most severe form of sepsis. It is widely accepted that cytokines play pivotal roles in the pathophysiology of septic shock. We reported previously that continuous hemodiafiltration (CHDF) using a polymethylmethacrylate (PMMA) membrane hemofilter removed various cytokines from blood continuously and efficiently, mainly by adsorption to membrane matrix of the hemofilter. Furthermore, in April 2000, we introduced to clinical practice a rapid assay system that determines blood levels of IL (interleukin)-6 in approximately 30 min. This enabled us to routinely measure blood IL-6 as an index of cytokine cascade activation in critically ill patients for real-time clinical monitoring of hypercytokinemia. The aim of the present cohort study was to evaluate the clinical efficacy of PMMA-CHDF in septic shock, a typical condition associated with hypercytokinemia. Forty-three patients with septic shock were assessed by monitoring of blood IL-6 level with a rapid assay system and immediate initiation of critical care including PMMA-CHDF for cytokine removal. Following initiation of PMMA-CHDF, early improvement of hemodynamics was noted, as well as an increase in urine output. PMMA-CHDF treatment improved both hypercytokinemia (assessed by measurement of blood IL-6 level) and dysoxia (assessed by measurement of blood lactate level). The present findings suggest that cytokine-oriented critical care using PMMA-CHDF might be an effective strategy for the treatment of septic shock.
              • Record: found
              • Abstract: found
              • Article: found

              Cytokine Removal in Extracorporeal Blood Purification: An in vitro Study

               Stephan Harm (corresponding) ,  Claudia Schildböck,  Jens Hartmann (2020)
              Background/Aims: Cytokines are among the main target substances that have to be removed effectively in order to improve the patient’s health status in the treatment of sepsis, septic shock, and liver diseases. Although there are various medical devices commercially available, the success of their clinical use is limited. The aim of this in vitro study was to compare 3 different medical devices with respect to their clearance for the cytokines interleukin-6 (IL-6), IL-8, IL-1β, and tumor necrosis factor alpha. The medical devices that were tested are the whole blood adsorbent CytoSorb, the high cutoff filter EMiC2, and the hemofilter HemofeelCH 1.8. Methods: The study was carried out on the multiFiltrate machine with 1 L human plasma for 8 h. Samples for cytokine quantification were taken at defined time points from the plasma pool. Each experiment was conducted in triplicates, and clearance was calculated for all tested cytokines. Results: All 3 medical devices showed good cytokine removal. The highest clearance for all cytokines was achieved by hemoperfusion with Cytosorb. IL-8 and IL-6 clearance were higher with Hemofeel (continuous venovenous hemodiafiltration) than with EMiC2 (continuous venovenous hemodialysis) because the polymethyl methacrylate (PMMA)-based membrane Hemofeel is able to remove these 2 cytokines by adsorption. Protein and albumin loss was highest withCytosorb and lowest with EMiC2. Conclusion: The mechanisms of cytokine removal by blood purification include convection, diffusion, and adsorption. PMMA-based filters are able to combine all 3 mechanisms for certain cytokines. Cytosorb showed the best adsorption kinetics, while dialysis with polystyrene-based membranes offers the best biocompatibility because they do not show any unspecific adsorption of other plasma components.

                Author and article information

                Blood Purif
                Blood Purif
                Blood Purification
                S. Karger AG (Allschwilerstrasse 10, P.O. Box · Postfach · Case postale, CH–4009, Basel, Switzerland · Schweiz · Suisse, Phone: +41 61 306 11 11, Fax: +41 61 306 12 34, )
                11 June 2020
                : 1-3
                aDepartment of Nephrology, National Center for Global Health and Medicine, Tokyo, Japan
                bDisease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
                cMedical Equipment Management Office, National Center for Global Health and Medicine, Tokyo, Japan
                dDepartment of Pathology, National Institute of Infectious Disease, Tokyo, Japan
                Author notes
                *Dr. Daisuke Katagiri, National Center for Global Health and Medicine, Department of Nephrology, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655 (Japan), dkatagiri@
                Copyright © 2020 by S. Karger AG, Basel

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                Page count
                Tables: 2, References: 10, Pages: 3
                Case Report


                Comment on this article