17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondria-targeted antioxidant therapy for an animal model of PCOS-IR

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polycystic ovary syndrome (PCOS) is a common endocrine disorder with unknown etiology and unsatisfactory clinical treatment. Considering the ethical limitations of studies involving humans, animal models that reflect features of PCOS and insulin resistance (IR) are crucial resources in investigating this syndrome. Our previous study showed that mitochondrial dysfunction resulted from pathogenic mutations of mitochondrial DNA (mtDNA), and that oxidative stress had an active role in the phenotypic manifestation of PCOS-IR. Therefore, it was hypothesized that limiting oxidative stress and mitochondrial damage may be useful and effective for the clinical treatment of PCOS-IR. For this purpose, the present study examined the therapeutic effects of the mitochondria-targeted antioxidant MitoQ 10 for PCOS-IR. Furthermore, the histopathology was used to analysis the ovarian morphological changes. The endocrine and reproductive related parameters were analyzed by ELISA approach. A PCOS-IR model was successfully established by subcutaneous injection of rats with testosterone propionate and feeding a high-fat diet. The 30 female Sprague-Dawley rats were then divided into three groups, comprising a control (n=10), animal model (PCOS-IR, n=10) and MitoQ 10 treatment (n=10) group. It was found that MitoQ 10 significantly improved the IR condition and reversed the endocrine and reproductive conditions of PCOS. In addition, the impaired mitochondrial functions were improved following MitoQ 10 administration. Notably, western blot results suggested that this antioxidant reduced the expression levels of apoptosis-related proteins cytochrome c and B-cell lymphoma-2 (Bcl-2)-associated X protein, whereas the anti-apoptotic protein Bcl-extra large was increased following MitoQ 10 treatment. Taken together, the data indicated that the MitoQ 10 may have a beneficial favorable therapeutic effect on animals with PCOS-IR, most likely via the protection of mitochondrial functions and regulation of programmed cell death-related proteins.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked.

          Bcl-2 is an integral membrane protein located mainly on the outer membrane of mitochondria. Overexpression of Bcl-2 prevents cells from undergoing apoptosis in response to a variety of stimuli. Cytosolic cytochrome c is necessary for the initiation of the apoptotic program, suggesting a possible connection between Bcl-2 and cytochrome c, which is normally located in the mitochondrial intermembrane space. Cells undergoing apoptosis were found to have an elevation of cytochrome c in the cytosol and a corresponding decrease in the mitochondria. Overexpression of Bcl-2 prevented the efflux of cytochrome c from the mitochondria and the initiation of apoptosis. Thus, one possible role of Bcl-2 in prevention of apoptosis is to block cytochrome c release from mitochondria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular characterization of mitochondrial apoptosis-inducing factor.

            Mitochondria play a key part in the regulation of apoptosis (cell death). Their intermembrane space contains several proteins that are liberated through the outer membrane in order to participate in the degradation phase of apoptosis. Here we report the identification and cloning of an apoptosis-inducing factor, AIF, which is sufficient to induce apoptosis of isolated nuclei. AIF is a flavoprotein of relative molecular mass 57,000 which shares homology with the bacterial oxidoreductases; it is normally confined to mitochondria but translocates to the nucleus when apoptosis is induced. Recombinant AIF causes chromatin condensation in isolated nuclei and large-scale fragmentation of DNA. It induces purified mitochondria to release the apoptogenic proteins cytochrome c and caspase-9. Microinjection of AIF into the cytoplasm of intact cells induces condensation of chromatin, dissipation of the mitochondrial transmembrane potential, and exposure of phosphatidylserine in the plasma membrane. None of these effects is prevented by the wide-ranging caspase inhibitor known as Z-VAD.fmk. Overexpression of Bcl-2, which controls the opening of mitochondrial permeability transition pores, prevents the release of AIF from the mitochondrion but does not affect its apoptogenic activity. These results indicate that AIF is a mitochondrial effector of apoptotic cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polycystic Ovary Syndrome

              A 22-year-old woman reports having hirsutism and irregular menses. She describes unpredictable and infrequent menses (five or six per year) since menarche at 11 years of age. Dark, coarse facial hair began to develop at 13 years of age. The symptoms worsened after she gained weight in college. The physical examination includes a body-mass index (BMI; the weight in kilograms divided by the square of the height in meters) of 29, blood pressure of 135/85 mm Hg, and moderate hirsutism without virilization. Laboratory tests reveal a total testosterone level of 65 ng per deciliter (2.3 nmol per liter) (assay reference range, 14 to 53 ng per deciliter [0.5 to 1.8 nmol per liter]), calculated free testosterone level of 15.3 pg per milliliter (53.1 pmol per liter) (assay reference range, 0.6 to 6.8 pg per milliliter [2.1 to 23.6 pmol per liter]), and glycated hemoglobin level of 5.7% (normal value, ≤5.6%). How should this case be evaluated and managed?
                Bookmark

                Author and article information

                Journal
                Int J Mol Med
                Int. J. Mol. Med
                IJMM
                International Journal of Molecular Medicine
                D.A. Spandidos
                1107-3756
                1791-244X
                January 2019
                05 November 2018
                05 November 2018
                : 43
                : 1
                : 316-324
                Affiliations
                [1 ]Central Laboratory, Hangzhou First People’s Hospital
                [2 ]Department of Pathology, Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310006
                [3 ]Department of Pharmacy, Hunan Chinese Medical University, Changsha, Hunan 410208
                [4 ]Department of Experimental Animal Center, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053
                [5 ]Department of Gynecological and Obstetrics, Hangzhou First People’s Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
                Author notes
                Correspondence to: Dr Yu Ding, Central Laboratory, Hangzhou First People’s Hospital, Zhejiang University, School of Medicine, 261 Huansha Road, Hangzhou, Zhejiang 310006, P.R. China, E-mail: dingyu.zj@ 123456gmail.com
                [*]

                Contributed equally

                Article
                ijmm-43-01-0316
                10.3892/ijmm.2018.3977
                6257859
                30431108
                b94237f9-5b07-44ed-8a72-acce4376c76e
                Copyright: © Ding et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 16 June 2018
                : 19 October 2018
                Categories
                Articles

                mitochondrial,mitoq10,antioxidant therapy,animal model,polycystic ovary syndrome and insulin resistance

                Comments

                Comment on this article