15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ubiquitin-activating enzyme E1 inhibitor PYR41 attenuates angiotensin II-induced activation of dendritic cells via the IκBa/NF-κB and MKP1/ERK/STAT1 pathways

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The activation of dendritic cells (DCs) is necessary to initiate immune responses. Angiotensin II (Ang II) can enhance the maturation and activation of DCs, but the mechanisms are still unclear. Ubiquitin-activating enzyme (E1/Uba1) is the common first step in ubiquitylation, which decides whether or not the modified protein is ultimately degraded by the proteasome. This study aimed to investigate the role of E1 in Ang II-induced activation of DCs and the underlying mechanisms. First, we showed that Ang II stimulation significantly up-regulated E1 expression in DCs. Moreover, Ang II treatment markedly induced phenotypic maturation, the secretion of cytokines and the immunostimulatory capacity of DCs. In contrast, inhibition of E1 by a small molecule inhibitor, 4 [4-(5-nitro-furan-2-ylmethylene)-3, 5-dioxo-pyrazolidin-1-yl]-benzoic acid ethyl ester (PYR41), markedly attenuated these effects. Mechanistically, PYR41 treatment markedly decreased K63-linked ubiquitination of tumour necrosis factor receptor-associated factor 6 and nuclear factor-κB essential modulator, inhibited proteasomal degradation of nuclear factor-κB inhibitor α and mitogen-activated protein kinase phosphatase 1 thereby resulting in activation of nuclear factor-κB, extracellular signal-regulated kinase 1/2 and signal transducer and activator of transcription 1 signalling pathways in DCs induced by Ang II. Taken together, our results demonstrate a novel role of E1 in Ang II-induced activation of DCs, and inhibition of E1 activity might be a potential therapeutic target for DC-mediated autoimmune diseases.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Taking dendritic cells into medicine.

          Dendritic cells (DCs) orchestrate a repertoire of immune responses that bring about resistance to infection and silencing or tolerance to self. In the settings of infection and cancer, microbes and tumours can exploit DCs to evade immunity, but DCs also can generate resistance, a capacity that is readily enhanced with DC-targeted vaccines. During allergy, autoimmunity and transplant rejection, DCs instigate unwanted responses that cause disease, but, again, DCs can be harnessed to silence these conditions with novel therapies. Here we present some medical implications of DC biology that account for illness and provide opportunities for prevention and therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ubiquitin signalling in the NF-kappaB pathway.

            The transcription factor NF-kappaB (nuclear factor kappa enhancer binding protein) controls many processes, including immunity, inflammation and apoptosis. Ubiquitination regulates at least three steps in the NF-kappaB pathway: degradation of IkappaB (inhibitor of NF-kappaB), processing of NF-kappaB precursors, and activation of the IkappaB kinase (IKK). Recent studies have revealed several enzymes involved in the ubiquitination and deubiquitination of signalling proteins that mediate IKK activation through a degradation-independent mechanism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics.

              The conjugation of proteins with ubiquitin plays numerous regulatory roles through both proteasomal-dependent and nonproteasomal-dependent functions. Alterations in ubiquitylation are observed in a wide range of pathologic conditions, including numerous malignancies. For this reason, there is great interest in targeting the ubiquitin-proteasome system in cancer. Several classes of proteasome inhibitors, which block degradation of ubiquitylated proteins, are widely used in research, and one, Bortezomib, is now in clinical use. Despite the well-defined and central role of the ubiquitin-activating enzyme (E1), no cell permeable inhibitors of E1 have been identified. Such inhibitors should, in principle, block all functions of ubiquitylation. We now report 4[4-(5-nitro-furan-2-ylmethylene)-3,5-dioxo-pyrazolidin-1-yl]-benzoic acid ethyl ester (PYR-41) as the first such inhibitor. Unexpectedly, in addition to blocking ubiquitylation, PYR-41 increased total sumoylation in cells. The molecular basis for this is unknown; however, increased sumoylation was also observed in cells harboring temperature-sensitive E1. Functionally, PYR-41 attenuates cytokine-mediated nuclear factor-kappaB activation. This correlates with inhibition of nonproteasomal (Lys-63) ubiquitylation of TRAF6, which is essential to IkappaB kinase activation. PYR-41 also prevents the downstream ubiquitylation and proteasomal degradation of IkappaBalpha. Furthermore, PYR-41 inhibits degradation of p53 and activates the transcriptional activity of this tumor suppressor. Consistent with this, it differentially kills transformed p53-expressing cells. Thus, PYR-41 and related pyrazones provide proof of principle for the capacity to differentially kill transformed cells, suggesting the potential for E1 inhibitors as therapeutics in cancer. These inhibitors can also be valuable tools for studying ubiquitylation.
                Bookmark

                Author and article information

                Journal
                Immunology
                Immunology
                Wiley
                00192805
                June 2014
                June 2014
                April 24 2014
                : 142
                : 2
                : 307-319
                Affiliations
                [1 ]Beijing AnZhen Hospital; Affiliated to Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases; The Key Laboratory of Remodelling-related Cardiovascular Diseases; Ministry of Education; Beijing China
                [2 ]Department of Physiology and Pathophysiology; Capital Medical University; Beijing China
                Article
                10.1111/imm.12255
                4008238
                24456201
                b94349e7-bf7e-4de4-9b8f-8f2b130eec71
                © 2014

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article