2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Irx3 and Irx5 - Novel Regulatory Factors of Postnatal Hypothalamic Neurogenesis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The hypothalamus is a brain region that exhibits highly conserved anatomy across vertebrate species and functions as a central regulatory hub for many physiological processes such as energy homeostasis and circadian rhythm. Neurons in the arcuate nucleus of the hypothalamus are largely responsible for sensing of peripheral signals such as leptin and insulin, and are critical for the regulation of food intake and energy expenditure. While these neurons are mainly born during embryogenesis, accumulating evidence have demonstrated that neurogenesis also occurs in postnatal-adult mouse hypothalamus, particularly in the first two postnatal weeks. This second wave of active neurogenesis contributes to the remodeling of hypothalamic neuronal populations and regulation of energy homeostasis including hypothalamic leptin sensing. Radial glia cell types, such as tanycytes, are known to act as neuronal progenitors in the postnatal mouse hypothalamus. Our recent study unveiled a previously unreported radial glia-like neural stem cell (RGL-NSC) population that actively contributes to neurogenesis in the postnatal mouse hypothalamus. We also identified Irx3 and Irx5, which encode Iroquois homeodomain-containing transcription factors, as genetic determinants regulating the neurogenic property of these RGL-NSCs. These findings are significant as IRX3 and IRX5 have been implicated in FTO-associated obesity in humans, illustrating the importance of postnatal hypothalamic neurogenesis in energy homeostasis and obesity. In this review, we summarize current knowledge regarding postnatal-adult hypothalamic neurogenesis and highlight recent findings on the radial glia-like cells that contribute to the remodeling of postnatal mouse hypothalamus. We will discuss characteristics of the RGL-NSCs and potential actions of Irx3 and Irx5 in the regulation of neural stem cells in the postnatal-adult mouse brain. Understanding the behavior and regulation of neural stem cells in the postnatal-adult hypothalamus will provide novel mechanistic insights in the control of hypothalamic remodeling and energy homeostasis.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          Comprehensive Integration of Single-Cell Data

          Single-cell transcriptomics has transformed our ability to characterize cell states, but deep biological understanding requires more than a taxonomic listing of clusters. As new methods arise to measure distinct cellular modalities, a key analytical challenge is to integrate these datasets to better understand cellular identity and function. Here, we develop a strategy to "anchor" diverse datasets together, enabling us to integrate single-cell measurements not only across scRNA-seq technologies, but also across different modalities. After demonstrating improvement over existing methods for integrating scRNA-seq data, we anchor scRNA-seq experiments with scATAC-seq to explore chromatin differences in closely related interneuron subsets and project protein expression measurements onto a bone marrow atlas to characterize lymphocyte populations. Lastly, we harmonize in situ gene expression and scRNA-seq datasets, allowing transcriptome-wide imputation of spatial gene expression patterns. Our work presents a strategy for the assembly of harmonized references and transfer of information across datasets.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The cell biology of neurogenesis.

            During the development of the mammalian central nervous system, neural stem cells and their derivative progenitor cells generate neurons by asymmetric and symmetric divisions. The proliferation versus differentiation of these cells and the type of division are closely linked to their epithelial characteristics, notably, their apical-basal polarity and cell-cycle length. Here, we discuss how these features change during development from neuroepithelial to radial glial cells, and how this transition affects cell fate and neurogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells

              Single-cell RNA-seq quantifies biological heterogeneity across both discrete cell types and continuous cell transitions. Partition-based graph abstraction (PAGA) provides an interpretable graph-like map of the arising data manifold, based on estimating connectivity of manifold partitions (https://github.com/theislab/paga). PAGA maps preserve the global topology of data, allow analyzing data at different resolutions, and result in much higher computational efficiency of the typical exploratory data analysis workflow. We demonstrate the method by inferring structure-rich cell maps with consistent topology across four hematopoietic datasets, adult planaria and the zebrafish embryo and benchmark computational performance on one million neurons. Electronic supplementary material The online version of this article (10.1186/s13059-019-1663-x) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                02 November 2021
                2021
                : 15
                : 763856
                Affiliations
                [1] 1Program in Developmental & Stem Cell Biology, The Hospital for Sick Children , Toronto, ON, Canada
                [2] 2Department of Molecular Genetics, University of Toronto , Toronto, ON, Canada
                Author notes

                Edited by: Qing-Feng Wu, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), China

                Reviewed by: Daniel A. Berg, University of Aberdeen, United Kingdom; Jong-Woo Sohn, Korea Advanced Institute of Science and Technology, South Korea

                *Correspondence: Joe Eun Son, joeeun.son@ 123456sickkids.ca

                This article was submitted to Neurodevelopment, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2021.763856
                8593166
                b94421ce-cf13-459d-b08b-d89cc82a61e4
                Copyright © 2021 Dou, Son and Hui.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 August 2021
                : 07 October 2021
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 138, Pages: 16, Words: 14087
                Funding
                Funded by: Canadian Institutes of Health Research, doi 10.13039/501100000024;
                Award ID: MOP-136821
                Funded by: Diabetes Canada, doi 10.13039/100013528;
                Categories
                Neuroscience
                Review

                Neurosciences
                fto (fat mass and obesity-associated) gene,obesity,metabolic regulation,neural stem cell (nsc),tanycyte,neurogenesis,irx3 gene,irx5 gene

                Comments

                Comment on this article