2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ion Migration Accelerated Reaction between Oxygen and Metal Halide Perovskites in Light and Its Suppression by Cesium Incorporation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file.

          Today's best perovskite solar cells use a mixture of formamidinium and methylammonium as the monovalent cations. Adding cesium improves the compositions greatly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance

            All of the cations currently used in perovskite solar cells abide by the tolerance factor for incorporation into the lattice. We show that the small and oxidation-stable rubidium cation (Rb+) can be embedded into a "cation cascade" to create perovskite materials with excellent material properties. We achieved stabilized efficiencies of up to 21.6% (average value, 20.2%) on small areas (and a stabilized 19.0% on a cell 0.5 square centimeters in area) as well as an electroluminescence of 3.8%. The open-circuit voltage of 1.24 volts at a band gap of 1.63 electron volts leads to a loss in potential of 0.39 volts, versus 0.4 volts for commercial silicon cells. Polymer-coated cells maintained 95% of their initial performance at 85°C for 500 hours under full illumination and maximum power point tracking.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability.

              Organometal trihalide perovskites (OTPs) are emerging as very promising photovoltaic materials because the power conversion efficiency (PCE) of OTP solar cells quickly rises and now rivals with that of single crystal silicon solar cells after only five-years research. Their prospects to replace silicon photovoltaics to reduce the cost of renewable clean energy are boosted by the low-temperature solution processing as well as the very low-cost raw materials and relative insensitivity to defects. The flexibility, semitransparency, and vivid colors of perovskite solar cells are attractive for niche applications such as built-in photovoltaics and portable lightweight chargers. However, the low stability of current hybrid perovskite solar cells remains a serious issue to be solved before their broad application. Among all those factors that affect the stability of perovskite solar cells, ion migration in OTPs may be intrinsic and cannot be taken away by device encapsulation. The presence of ion migration has received broad attention after the report of photocurrent hysteresis in OTP based solar cells. As suggested by much direct and indirect experimental evidence, the ion migration is speculated to be the origin or an important contributing factor for many observed unusual phenomenon in OTP materials and devices, such as current-voltage hysteresis, switchable photovoltaic effect, giant dielectric constant, diminished transistor behavior at room temperature, photoinduced phase separation, photoinduced self-poling effect, and electrical-field driven reversible conversion between lead iodide (PbI2) and methylammonium lead triiodide (MAPbI3). Undoubtedly thorough insight into the ion-migration mechanism is highly desired for the development of OTP based devices to improve intrinsic stability in the dark and under illumination. In this Account, we critically review the recent progress in understanding the fundamental science on ion migration in OTP based solar cells. We look into both theoretical and experiment advances in answering these basic questions: Does ion migration occur and cause the photocurrent hysteresis in perovskite solar cells? What are the migrating ion species? How do ions migrate? How does ion migration impact the device efficiency and stability? How can ion migration be mitigated or eliminated? We also raise some questions that need to be understood and addressed in the future.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Energy Materials
                Adv. Energy Mater.
                Wiley
                1614-6832
                1614-6840
                February 2021
                January 15 2021
                February 2021
                : 11
                : 8
                : 2002552
                Affiliations
                [1 ]Hunan Key Laboratory of Super Microstructure and Ultrafast Process School of Physics and Electronics Central South University Changsha Hunan 410083 P. R. China
                [2 ]Siyuan Laboratory Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials Department of Physics Jinan University Guangzhou Guangdong 510632 P. R. China
                [3 ]Department of Physics and Astronomy University of Rochester Rochester NY 14627 USA
                [4 ]State Key Laboratory of Powder Metallurgy Central South University Changsha Hunan 410083 P. R. China
                Article
                10.1002/aenm.202002552
                b9482521-66b1-4036-a094-74c7d5899f51
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article