1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Plasma MicroRNA-21 Predicts Postoperative Pulmonary Complications in Patients Undergoing Pneumoresection

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Postoperative pulmonary complication (PPC) remains the most common postoperative complication in patients undergoing noncardiac thoracic surgery. We conducted the clinical study to determine the diagnostic role of miRNA-21 in noncardiac thoracic surgery. 368 patients undergoing noncardiac thoracic surgery were recruited. Blood samples were collected before anesthesia and 2 hours after incision during surgery for RT-PCR measurement of miRNA-21. PPC occurrence, extrapulmonary complications, duration of ICU stay, and death within 1 year were evaluated. The overall rate of PPCs following surgery was 10.32%. A high relative miRNA-21 level was an independent risk factor for PPCs within 7 days (OR, 2.69; 95% CI, 1.25–5.66; and P < 0.001). High miRNA-21 was also associated with an increased risk of extrapulmonary complications (OR, 3.62; 95% CI, 2.26–5.81; and P < 0.001), prolonged ICU stay (OR, 6.54; 95% CI, 2.26–18.19; and P < 0.001), increased death within 30 days (OR, 6.17; 95% CI, 2.11–18.08; and P < 0.001), and death within 1 year (OR, 7.30; 95% CI, 2.76–19.28; and P < 0.001). In summary, plasma miRNA-21 may serve as a novel biomarker of PPCs for patients undergoing noncardiac thoracic surgery.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA control of signal transduction.

          MicroRNAs (miRNAs) are integral elements in the post-transcriptional control of gene expression. After the identification of hundreds of miRNAs, the challenge is now to understand their specific biological function. Signalling pathways are ideal candidates for miRNA-mediated regulation owing to the sharp dose-sensitive nature of their effects. Indeed, emerging evidence suggests that miRNAs affect the responsiveness of cells to signalling molecules such as transforming growth factor-beta, WNT, Notch and epidermal growth factor. As such, miRNAs serve as nodes of signalling networks that ensure homeostasis and regulate cancer, metastasis, fibrosis and stem cell biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21.

            The tumor suppressor PDCD4 is a proinflammatory protein that promotes activation of the transcription factor NF-kappaB and suppresses interleukin 10 (IL-10). Here we found that mice deficient in PDCD4 were protected from lipopolysaccharide (LPS)-induced death. The induction of NF-kappaB and IL-6 by LPS required PDCD4, whereas LPS enhanced IL-10 induction in cells lacking PDCD4. Treatment of human peripheral blood mononuclear cells with LPS resulted in lower PDCD4 expression, which was due to induction of the microRNA miR-21 via the adaptor MyD88 and NF-kappaB. Transfection of cells with a miR-21 precursor blocked NF-kappaB activity and promoted IL-10 production in response to LPS, whereas transfection with antisense oligonucleotides to miR-21 or targeted protection of the miR-21 site in Pdcd4 mRNA had the opposite effect. Thus, miR-21 regulates PDCD4 expression after LPS stimulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death.

              Micro (mi)RNAs are small, highly conserved noncoding RNAs that control gene expression post-transcriptionally either via the degradation of target mRNAs or the inhibition of protein translation. Each miRNA is believed to regulate the expression of multiple mRNA targets, and many miRNAs have been linked to the initiation and progression of human cancer. miRNAs control various activities of the immune system and different stages of hematopoietic development, and their misexpression is the cause of various blood malignancies. Certain miRNAs have oncogenic activities, whereas others have the potential to act as tumor suppressors. Because they control fundamental processes such as differentiation, cell growth and cell death, the study of the role of miRNAs in human neoplasms holds great promise for novel forms of therapy. Here, we summarize the role of miRNAs and their targets in contributing to human cancers and their function as regulators of apoptotic pathways and the immune system.
                Bookmark

                Author and article information

                Journal
                Mediators Inflamm
                Mediators Inflamm
                MI
                Mediators of Inflammation
                Hindawi Publishing Corporation
                0962-9351
                1466-1861
                2016
                12 May 2016
                : 2016
                : 3591934
                Affiliations
                Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
                Author notes

                Academic Editor: Ronald Gladue

                Article
                10.1155/2016/3591934
                4880696
                27293316
                b94bcff3-0024-4703-bca3-74dc37a48096
                Copyright © 2016 Yaling Liu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 January 2016
                : 16 April 2016
                : 19 April 2016
                Categories
                Research Article

                Immunology
                Immunology

                Comments

                Comment on this article