1,380
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Impact of flash glucose monitoring on hypoglycaemia in adults with type 1 diabetes managed with multiple daily injection therapy: a pre-specified subgroup analysis of the IMPACT randomised controlled trial

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims/hypothesis

          Evidence for the effectiveness of interstitial glucose monitoring in individuals with type 1 diabetes using multiple daily injection (MDI) therapy is limited. In this pre-specified subgroup analysis of the Novel Glucose-Sensing Technology and Hypoglycemia in Type 1 Diabetes: a Multicentre, Non-masked, Randomised Controlled Trial’ (IMPACT), we assessed the impact of flash glucose technology on hypoglycaemia compared with capillary glucose monitoring.

          Methods

          This multicentre, prospective, non-masked, RCT enrolled adults from 23 European diabetes centres. Individuals were eligible to participate if they had well-controlled type 1 diabetes (diagnosed for ≥5 years), HbA 1c ≤ 58 mmol/mol [7.5%], were using MDI therapy and on their current insulin regimen for ≥3 months, reported self-monitoring of blood glucose on a regular basis (equivalent to ≥3 times/day) for ≥2 months and were deemed technically capable of using flash glucose technology. Individuals were excluded if they were diagnosed with hypoglycaemia unawareness, had diabetic ketoacidosis or myocardial infarction in the preceding 6 months, had a known allergy to medical-grade adhesives, used continuous glucose monitoring (CGM) within the previous 4 months or were currently using CGM or sensor-augmented pump therapy, were pregnant or planning pregnancy or were receiving steroid therapy for any disorders. Following 2 weeks of blinded (to participants and investigator) sensor wear by all participants, participants with sensor data for more than 50% of the blinded wear period (or ≥650 individual sensor results) were randomly assigned, in a 1:1 ratio by a central interactive web response system (IWRS) using the biased-coin minimisation method, to flash sensor-based glucose monitoring (intervention group) or self-monitoring of capillary blood glucose (control group). The control group had two further 14 day blinded sensor-wear periods at the 3 and 6 month time points. Participants, investigators and staff were not masked to group allocation. The primary outcome was the change in time in hypoglycaemia (<3.9 mmol/l) between baseline and 6 months in the full analysis set.

          Results

          Between 4 September 2014 and 12 February 2015, 167 participants using MDI were enrolled. After screening and the baseline phase, participants were randomised to intervention ( n = 82) and control groups ( n = 81). One woman from each group was excluded owing to pregnancy; the full analysis set included 161 randomised participants. At 6 months, mean time in hypoglycaemia was reduced by 46.0%, from 3.44 h/day to 1.86 h/day in the intervention group (baseline adjusted mean change, −1.65 h/day), and from 3.73 h/day to 3.66 h/day in the control group (baseline adjusted mean change, 0.00 h/day), with a between-group difference of −1.65 (95% CI −2.21, −1.09; p < 0.0001). For participants in the intervention group, the mean ± SD daily sensor scanning frequency was 14.7 ± 10.7 (median 12.3) and the mean number of self-monitored blood glucose tests performed per day reduced from 5.5 ± 2.0 (median 5.4) at baseline to 0.5 ± 1.0 (median 0.1). The baseline frequency of self-monitored blood glucose tests by control participants was maintained (from 5.6 ± 1.9 [median 5.2] to 5.5 ± 2.6 [median 5.1] per day). Treatment satisfaction and perception of hypo/hyperglycaemia were improved compared with control. No device-related hypoglycaemia or safety-related issues were reported. Nine serious adverse events were reported for eight participants (four in each group), none related to the device. Eight adverse events for six of the participants in the intervention group were also reported, which were related to sensor insertion/wear; four of these participants withdrew because of the adverse event.

          Conclusions/interpretation

          Use of flash glucose technology in type 1 diabetes controlled with MDI therapy significantly reduced time in hypoglycaemia without deterioration of HbA 1c, and improved treatment satisfaction.

          Trial registration:

          ClinicalTrials.gov NCT02232698

          Funding:

          Abbott Diabetes Care, Witney, UK

          Electronic supplementary material

          The online version of this article (10.1007/s00125-017-4527-5) contains peer-reviewed but unedited supplementary material, which is available to authorised users.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Assessing psychosocial distress in diabetes: development of the diabetes distress scale.

          The purpose of this study was to describe the development of the Diabetes Distress Scale (DDS), a new instrument for the assessment of diabetes-related emotional distress, based on four independent patient samples. In consultation with patients and professionals from multiple disciplines, a preliminary scale of 28 items was developed, based a priori on four distress-related domains: emotional burden subscale, physician-related distress subscale, regimen-related distress subscale, and diabetes-related interpersonal distress. The new instrument was included in a larger battery of questionnaires used in diabetes studies at four diverse sites: waiting room at a primary care clinic (n = 200), waiting room at a diabetes specialty clinic (n = 179), a diabetes management study program (n = 167), and an ongoing diabetes management program (n = 158). Exploratory factor analyses revealed four factors consistent across sites (involving 17 of the 28 items) that matched the critical content domains identified earlier. The correlation between the 28-item and 17-item scales was very high (r = 0.99). The mean correlation between the 17-item total score (DDS) and the four subscales was high (r = 0.82), but the pattern of interscale correlations suggested that the subscales, although not totally independent, tapped into relatively different areas of diabetes-related distress. Internal reliability of the DDS and the four subscales was adequate (alpha > 0.87), and validity coefficients yielded significant linkages with the Center for Epidemiological Studies Depression Scale, meal planning, exercise, and total cholesterol. Insulin users evidenced the highest mean DDS total scores, whereas diet-controlled subjects displayed the lowest scores (P < 0.001). The DDS has a consistent, generalizable factor structure and good internal reliability and validity across four different clinical sites. The new instrument may serve as a valuable measure of diabetes-related emotional distress for use in research and clinical practice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Flash Glucose-Sensing Technology as a Replacement for Blood Glucose Monitoring for the Management of Insulin-Treated Type 2 Diabetes: a Multicenter, Open-Label Randomized Controlled Trial

            Introduction Glycemic control in participants with insulin-treated diabetes remains challenging. We assessed safety and efficacy of new flash glucose-sensing technology to replace self-monitoring of blood glucose (SMBG). Methods This open-label randomized controlled study (ClinicalTrials.gov, NCT02082184) enrolled adults with type 2 diabetes on intensive insulin therapy from 26 European diabetes centers. Following 2 weeks of blinded sensor wear, 2:1 (intervention/control) randomization (centrally, using biased-coin minimization dependant on study center and insulin administration) was to control (SMBG) or intervention (glucose-sensing technology). Participants and investigators were not masked to group allocation. Primary outcome was difference in HbA1c at 6 months in the full analysis set. Prespecified secondary outcomes included time in hypoglycemia, effect of age, and patient satisfaction. Results Participants (n = 224) were randomized (149 intervention, 75 controls). At 6 months, there was no difference in the change in HbA1c between intervention and controls: −3.1 ± 0.75 mmol/mol, [−0.29 ± 0.07% (mean ± SE)] and −3.4 ± 1.04 mmol/mol (−0.31 ± 0.09%) respectively; p = 0.8222. A difference was detected in participants aged <65 years [−5.7 ± 0.96 mmol/mol (−0.53 ± 0.09%) and −2.2 ± 1.31 mmol/mol (−0.20 ± 0.12%), respectively; p = 0.0301]. Time in hypoglycemia <3.9 mmol/L (70 mg/dL) reduced by 0.47 ± 0.13 h/day [mean ± SE (p = 0.0006)], and <3.1 mmol/L (55 mg/dL) reduced by 0.22 ± 0.07 h/day (p = 0.0014) for intervention participants compared with controls; reductions of 43% and 53%, respectively. SMBG frequency, similar at baseline, decreased in intervention participants from 3.8 ± 1.4 tests/day (mean ± SD) to 0.3 ± 0.7, remaining unchanged in controls. Treatment satisfaction was higher in intervention compared with controls (DTSQ 13.1 ± 0.50 (mean ± SE) and 9.0 ± 0.72, respectively; p < 0.0001). No serious adverse events or severe hypoglycemic events were reported related to sensor data use. Forty-two serious events [16 (10.7%) intervention participants, 12 (16.0%) controls] were not device-related. Six intervention participants reported nine adverse events for sensor-wear reactions (two severe, six moderate, one mild). Conclusion Flash glucose-sensing technology use in type 2 diabetes with intensive insulin therapy results in no difference in HbA1c change and reduced hypoglycemia, thus offering a safe, effective replacement for SMBG. Trial registration ClinicalTrials.gov identifier: NCT02082184. Funding Abbott Diabetes Care. Electronic supplementary material The online version of this article (doi:10.1007/s13300-016-0223-6) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial

              Aims/hypothesis The aim of this multicentre, randomised, controlled crossover study was to determine the efficacy of adding continuous glucose monitoring (CGM) to insulin pump therapy (CSII) in type 1 diabetes. Methods Children and adults (n = 153) on CSII with HbA1c 7.5–9.5% (58.5–80.3 mmol/mol) were randomised to (CGM) a Sensor On or Sensor Off arm for 6 months. After 4 months’ washout, participants crossed over to the other arm for 6 months. Paediatric and adult participants were separately electronically randomised through the case report form according to a predefined randomisation sequence in eight secondary and tertiary centres. The primary outcome was the difference in HbA1c levels between arms after 6 months. Results Seventy-seven participants were randomised to the On/Off sequence and 76 to the Off/On sequence; all were included in the primary analysis. The mean difference in HbA1c was –0.43% (–4.74 mmol/mol) in favour of the Sensor On arm (8.04% [64.34 mmol/mol] vs 8.47% [69.08 mmol/mol]; 95% CI −0.32%, −0.55% [−3.50, −6.01 mmol/mol]; p < 0.001). Following cessation of glucose sensing, HbA1c reverted to baseline levels. Less time was spent with sensor glucose <3.9 mmol/l during the Sensor On arm than in the Sensor Off arm (19 vs 31 min/day; p = 0.009). The mean number of daily boluses increased in the Sensor On arm (6.8 ± 2.5 vs 5.8 ± 1.9, p < 0.0001), together with the frequency of use of the temporary basal rate (0.75 ± 1.11 vs 0.26 ± 0.47, p < 0.0001) and manual insulin suspend (0.91 ± 1.25 vs 0.70 ± 0.75, p < 0.018) functions. Four vs two events of severe hypoglycaemia occurred in the Sensor On and Sensor Off arm, respectively (p = 0.40). Conclusions/interpretation Continuous glucose monitoring was associated with decreased HbA1c levels and time spent in hypoglycaemia in individuals with type 1 diabetes using CSII. More frequent self-adjustments of insulin therapy may have contributed to these effects. Trial registration ClinicalTrials.gov registration no. NCT00598663. Funding The study was funded by Medtronic International Trading Sarl Switzerland.
                Bookmark

                Author and article information

                Contributors
                jan.bolinder@ki.se
                Journal
                Diabetologia
                Diabetologia
                Diabetologia
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0012-186X
                1432-0428
                23 December 2017
                23 December 2017
                2018
                : 61
                : 3
                : 539-550
                Affiliations
                [1 ]Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institute, 141 86 Stockholm, Sweden
                [2 ]Department of Medicine, Clinica Diabetologica, Gijon, Spain
                [3 ]Department of Internal Medicine, Haaglanden Medisch Centrum, Den Haag, the Netherlands
                [4 ]Department of Diabetes, Zentrum für Diabetologie Hamburg Bergedorf, Hamburg, Germany
                [5 ]Department of Medicine, Wehrle-Diakonissen Hospital, Salzburg, Austria
                [6 ]1st Department of Medicine, University Hospital of Paracelsus Medical Private University, Salzburg, Austria
                Article
                4527
                10.1007/s00125-017-4527-5
                6448969
                29273897
                b95ff704-0b43-4c1c-bd13-580bef7be1a5
                © The Author(s) 2017

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 24 August 2017
                : 9 November 2017
                Funding
                Funded by: Abbott Diabetes Care
                Categories
                Article
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2018

                Endocrinology & Diabetes
                clinical diabetes,devices,hypoglycaemia,insulin therapy
                Endocrinology & Diabetes
                clinical diabetes, devices, hypoglycaemia, insulin therapy

                Comments

                Comment on this article