31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical features of X linked juvenile retinoschisis in Chinese families associated with novel mutations in the RS1 gene

      research-article
      , ,
      Molecular Vision
      Molecular Vision

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To describe the clinical phenotype of X linked juvenile retinoschisis (XLRS) in 12 Chinese families with 11 different mutations in the XLRS1 ( RS1) gene.

          Methods

          Complete ophthalmic examinations were carried out in 29 affected males (12 probands), 38 heterozygous females carriers, and 100 controls. The coding regions of the RS1 gene that encodes retinoschisin were amplified by polymerase chain reaction and directly sequenced.

          Results

          Of the 29 male participants, 28 (96.6%) displayed typical foveal schisis. Eleven different RS1 mutations were identified in 12 families; four of these mutations, two frameshift mutations (26 del T of exon 1 and 488 del G of exon 5), and two missense mutations (Asp145His and Arg156Gly) of exon 5, had not been previously described. One non-disease-related polymorphism (NSP): 576C to T (Pro192Pro) change was also newly reported herein. We compared genotypes and observed more severe clinical features in families with the following mutations: frameshift mutation (26 del T) of exon 1, the splice donor site mutation (IVS1+2T to C),or Arg102Gln, Arg209His, and Arg213Gln mutations.

          Conclusions

          Severe XLRS phenotypes are associated with the frameshift mutation 26 del T, splice donor site mutation (IVS1+2T to C), and Arg102Gln, Asp145His, Arg209His, and Arg213Gln mutations. The wide variability in the phenotype in Chinese patients with XLRS and different mutations in the RS1 gene is described. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: not found
          • Article: not found

          X linked retinoschisis.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            X-linked retinoschisis: a clinical and molecular genetic review.

            X-linked retinoschisis is a leading cause of macular degeneration in male children. It is characterized by a high degree of clinical variability. Clinical features include a stellate foveal retinoschisis, with or without peripheral retinoschisis. The schisis occurs within the inner retina, primarily at the level of the nerve fiber layer. The disease-causing gene, X-linked retinoschisis 1, has recently been identified, and is expressed in photoreceptor and bipolar cells. This gene codes for retinoschisin, a secreted protein containing a discoidin domain which may be involved in cellular adhesion or cell-cell interactions. The identification of this gene allows for improved diagnosis and contributes to the understanding of this condition. Visual prognosis is variable, as X-linked retinoschisis exhibits a high degree of phenotypic variability. Although there is no treatment to halt the progressive maculopathy, clinical management is directed toward treatment of amblyopia and surgical correction of certain complications. X-linked retinoschisis is an important condition to study, both to improve the clinical management of this disorder, and to better understand retinal function and development. Herein, we review the clinical, histopathologic, and molecular genetic and treatment options of X-linked retinoschisis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Discoidin domain receptors: structural relations and functional implications.

              Multicellular life relies on the presence of extracellular matrix to provide scaffolding for cells and tissue compartments. To provide communication between cells and tissues, a multitude of cell surface receptors are triggered by soluble ligands and components of the extracellular matrix. A large family of these receptors transmit signals through the use of an intrinsic tyrosine kinase function. The subgroup of discoidin domain receptors (DDRs) is distinguished from other members of the receptor tyrosine kinase family by a discoidin homology repeat in their extracellular domains that is also found in a variety of other transmembrane and secreted proteins. Sequence comparisons show that non-mammalian orthologs of DDRs exist: three closely related genes in Caenorhabditis and one in the sponge Geodia cydonium. Recently, various types of collagen have been identified as the ligands for the two mammalian discoidin domain receptor tyrosine kinases, DDR1 and DDR2. The binding of collagen to DDRs results in a delayed but sustained tyrosine kinase activation. Both receptors display several potential tyrosine phosphorylation sites that are able to relay the signal by interacting with cytoplasmic effector proteins. The potential cross-talk to other receptors for collagen and the clinical aspects of DDR function are discussed.
                Bookmark

                Author and article information

                Journal
                Mol Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2007
                07 June 2007
                : 13
                : 804-812
                Affiliations
                [1]Department of Ophthalmology, People's Hospital, Peking University, Beijing, P R China
                Author notes
                Correspondence to: Xiaoxin Li, Department of Ophthalmology, People's Hospital, Peking University, eleventh Xizhimen South Street, Xicheng District, Beijing, 100044, P R China; Phone: 8610-13801153661; FAX: 8610-68792813; email: drlixiaoxin@ 123456vip.sina.com
                Article
                a88
                2768756
                17615541
                b96999f0-ac62-4347-a52e-45a0d485160a
                Copyright @ 2007

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 April 2006
                : 31 May 2007
                Categories
                Research Article
                Custom metadata
                Export to XML

                Vision sciences
                Vision sciences

                Comments

                Comment on this article