1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasmid carriage and the natural complexity of bacterial populations contributes to plasmid persistence Translated title: El transporte de plásmidos y la complejidad natural de las poblaciones bacterianas contribuyen a la persistencia del plásmido

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract Introduction: Plasmids carry and transport genes that assist their hosts to survive in many environments. Many studies have examined the conditions for plasmid persistence in bacterial populations. A limitation includes that a majority of the mathematical models for examining plasmid persistence only included bacteria from similar colonies. However, most bacterial cells inhabit complex communities where plasmids disseminate between varied bacterial host cells. Thus, there is a gap in knowledge concerning the persistence of plasmids in natural bacterial populations. To address a few of these gaps in knowledge, the present study attempted to examine the effects of plasmid carriage on intrinsic stages of bacterial populations in Bacillus subtilis co-cultures. Material and methods: B. subtilis cells were transformed with CRISPR-hCas-9 plasmid vectors where the natural phases of bacterial growth, biofilm production, and antibiotic resistance were examined in relation to plasmid carriage. These three natural phases were measured in relation to plasmid carriage through in vitro co-culture assays. Results: After calculating the CFU/mL, bacterial growth in the B. subtilis-Carrier with Escherichia coli (B. sub-C-E. coli) and Vibrio harveyi (B. sub-C-VH) co-cultures significantly decreased with a paired-t-test two-tailed P=0. The WT B. subtilis-V.H samples, the B. subtilis Carrier-V.H co-cultures, and the controls each scored a total of 40, 47, and 46 of crystal violet (CV) intensity of biofilm, respectively. Biofilm formation decreased after co-culturing E. coli with the B. subtilis-Carrier, yielding a P<0.001. The antibiotic resistance levels of the co-cultures increased by 3% for the B. sub-C-V.H samples while the B. sub-C-E. coli co-cultures decreased in antibiotic sensitivity by approximately 1.5%. Conclusions: Plasmid carriage contributes to plasmid persistence via altering the natural phases of bacterial populations.

          Translated abstract

          Resumen Introducción: Los plásmidos portan y transportan genes que ayudan a sus huéspedes a sobrevivir en muchos entornos. Muchos estudios han examinado las condiciones para la persistencia de plásmidos en poblaciones bacterianas. Una limitación incluye que la mayoría de los modelos matemáticos para examinar la persistencia de plásmidos solo incluyeron bacterias de colonias similares. Sin embargo, la mayoría de las células bacterianas habitan en comunidades complejas donde los plásmidos se diseminan entre diversas células huésped bacterianas. Por lo tanto, existe un vacío en el conocimiento sobre la persistencia de plásmidos en poblaciones bacterianas naturales. Para abordar algunas de estas lagunas en el conocimiento, el presente estudio intentó examinar los efectos del transporte de plásmidos en las etapas intrínsecas de las poblaciones bacterianas en cocultivos de Bacillus subtilis. Material y métodos: Células de B. subtilis se transformaron con vectores plasmídicos CRISPR-hCas-9 donde se examinaron las fases naturales de crecimiento bacteriano, producción de biopelículas y resistencia a los antibióticos en relación con el transporte del plásmido. Estas tres fases naturales se midieron en relación con el transporte de plásmidos a través de ensayos de cocultivo in vitro. Resultados: Después de calcular las UFC/mL, el crecimiento bacteriano en los cocultivos de B. subtilis-Carrier con Escherichia coli (B. sub-C-E. coli) y Vibrio harveyi (B. sub-C-VH) disminuyó significativamente con un -t-test de dos colas P=0. Las muestras WT B. subtilis-V.H, los cocultivos B. subtilis Carrier-V.H y los controles obtuvieron cada uno un total de 40, 47 y 46 de intensidad de biopelícula cristal violeta (CV), respectivamente. La formación de biopelículas disminuyó después de cocultivar E. coli con B. subtilis-Carrier, lo que arrojó un P<0,001. Los niveles de resistencia a los antibióticos de los cocultivos aumentaron un 3 % para las muestras de B. sub-C-V.H, mientras que las muestras de B. sub-C-E. Los cocultivos de E. coli disminuyeron la sensibilidad a los antibióticos en aproximadamente un 1,5 %. Conclusiones: El transporte de plásmidos contribuye a la persistencia de plásmidos mediante la alteración de las fases naturales de las poblaciones bacterianas.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae.

          The mammalian gut harbors a dense microbial community interacting in multiple ways, including horizontal gene transfer (HGT). Pangenome analyses established particularly high levels of genetic flux between Gram-negative Enterobacteriaceae. However, the mechanisms fostering intraenterobacterial HGT are incompletely understood. Using a mouse colitis model, we found that Salmonella-inflicted enteropathy elicits parallel blooms of the pathogen and of resident commensal Escherichia coli. These blooms boosted conjugative HGT of the colicin-plasmid p2 from Salmonella enterica serovar Typhimurium to E. coli. Transconjugation efficiencies of ~100% in vivo were attributable to high intrinsic p2-transfer rates. Plasmid-encoded fitness benefits contributed little. Under normal conditions, HGT was blocked by the commensal microbiota inhibiting contact-dependent conjugation between Enterobacteriaceae. Our data show that pathogen-driven inflammatory responses in the gut can generate transient enterobacterial blooms in which conjugative transfer occurs at unprecedented rates. These blooms may favor reassortment of plasmid-encoded genes between pathogens and commensals fostering the spread of fitness-, virulence-, and antibiotic-resistance determinants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Role of the Bacterial Flagellum in Adhesion and Virulence

            The bacterial flagellum is a complex apparatus assembled of more than 20 different proteins. The flagellar basal body traverses the cell wall, whereas the curved hook connects the basal body to the whip-like flagellar filament that protrudes several µm from the bacterial cell. The flagellum has traditionally been regarded only as a motility organelle, but more recently it has become evident that flagella have a number of other biological functions. The major subunit, flagellin or FliC, of the flagellum plays a well-documented role in innate immunity and as a dominant antigen of the adaptive immune response. Importantly, flagella have also been reported to function as adhesins. Whole flagella have been indicated as significant in bacterial adhesion to and invasion into host cells. In various pathogens, e.g., Escherichia coli, Pseudomonas aeruginosa and Clostridium difficile, flagellin and/or the distally located flagellar cap protein have been reported to function as adhesins. Recently, FliC of Shiga-toxigenic E. coli was shown to be involved in cellular invasion via lipid rafts. Here, we examine the latest or most important findings regarding flagellar adhesive and invasive properties, especially focusing on the flagellum as a potential virulence factor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fitness Costs of Plasmids: a Limit to Plasmid Transmission

              Plasmids mediate the horizontal transmission of genetic information between bacteria, facilitating their adaptation to multiple environmental conditions. An especially important example of the ability of plasmids to catalyze bacterial adaptation and evolution is their instrumental role in the global spread of antibiotic resistance, which constitutes a major threat to public health. Plasmids provide bacteria with new adaptive tools, but they also entail a metabolic burden that, in the absence of selection for plasmid-encoded traits, reduces the competitiveness of the plasmid-carrying clone. Although this fitness reduction can be alleviated over time through compensatory evolution, the initial cost associated with plasmid carriage is the main constraint on the vertical and horizontal replication of these genetic elements. The fitness effects of plasmids therefore have a crucial influence on their ability to associate with new bacterial hosts and consequently on the evolution of plasmid-mediated antibiotic resistance. However, the molecular mechanisms underlying plasmid fitness cost remain poorly understood. Here, we analyze the literature in the field and examine the potential fitness effects produced by plasmids throughout their life cycle in the host bacterium. We also explore the various mechanisms evolved by plasmids and bacteria to minimize the cost entailed by these mobile genetic elements. Finally, we discuss potential future research directions in the field.
                Bookmark

                Author and article information

                Journal
                ijm
                Iberoamerican Journal of Medicine
                Iberoam J Med
                Hospital San Pedro (Logroño, La Rioja, Spain )
                2695-5075
                2695-5075
                2022
                : 4
                : 3
                : 143-156
                Affiliations
                [1] Los Angeles California orgnameLAL4Bsynbiotics L.L.C. orgdiv1Biotechnology Estados Unidos de América
                Article
                S2695-50752022000300004 S2695-5075(22)00400300004
                10.53986/ibjm.2022.0024
                b96baa58-5b3f-443d-9007-0dbf1f89afd8

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 23 February 2022
                : 11 June 2022
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 51, Pages: 14
                Product

                SciELO Spain

                Categories
                Original Article

                Biofilm,Plasmid carriage,HGT,Conjugación,Persistencia de plásmido,Trasnporte de plásmido,Conjugation,Plasmid persistence

                Comments

                Comment on this article