27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Assembly of Diverse Immune Receptors Is Focused on a Polar Membrane-Embedded Interaction Site

      research-article
      1 , 2 , 1 , 2 , 1 , 2 , 3 ,
      PLoS Biology
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The majority of receptors responsible for activation of distinct cell types within the immune system assemble with dimeric signaling modules through interaction of a basic transmembrane residue with a pair of acidic residues of the signaling dimer. Because assembly of other membrane proteins requires specific interactions along extended stretches of transmembrane helices, we examined how transmembrane sequences flanking the polar interaction site contribute to assembly for three receptors that associate with different signaling modules—the natural killer cell receptors KIR and NKG2D and the Fc receptor for IgA, FcαRI. The KIR and NKG2D receptors assembled with the DAP12 and DAP10 dimers, respectively, even when the entire KIR or NKG2D transmembrane domains were replaced by polyleucine sequences with a properly positioned basic residue. In contrast, a high degree of specificity for the basic side chain could be observed because the KIR–DAP12 and FcαRI–Fcγ interactions favored lysine or arginine, respectively. Steric hindrance among incompatible extra-membranous domains and competition for signaling modules also contributed to specificity of assembly. These results demonstrate that these interactions are focused on the polar site created by three ionizable transmembrane residues, and explain how the DAP12 and Fcγ signaling modules can assemble with large, non-overlapping sets of receptors that have highly divergent transmembrane sequences.

          Abstract

          By mutating all residues but one to polyleucine in diverse immune receptors, the authors find that only one polar interaction embedded in the membrane is required for their specificity and assembly.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          NK cell recognition.

          The integrated processing of signals transduced by activating and inhibitory cell surface receptors regulates NK cell effector functions. Here, I review the structure, function, and ligand specificity of the receptors responsible for NK cell recognition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA.

            Stress-inducible MICA, a distant homolog of major histocompatibility complex (MHC) class I, functions as an antigen for gammadelta T cells and is frequently expressed in epithelial tumors. A receptor for MICA was detected on most gammadelta T cells, CD8+ alphabeta T cells, and natural killer (NK) cells and was identified as NKG2D. Effector cells from all these subsets could be stimulated by ligation of NKG2D. Engagement of NKG2D activated cytolytic responses of gammadelta T cells and NK cells against transfectants and epithelial tumor cells expressing MICA. These results define an activating immunoreceptor-MHC ligand interaction that may promote antitumor NK and T cell responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C.

              The protein HLA-E is a non-classical major histocompatibility complex (MHC) molecule of limited sequence variability. Its expression on the cell surface is regulated by the binding of peptides derived from the signal sequence of some other MHC class I molecules. Here we report the identification of ligands for HLA-E. We constructed tetramers in which recombinant HLA-E and beta2-microglobulin were refolded with an MHC leader-sequence peptide, biotinylated, and conjugated to phycoerythrin-labelled Extravidin. This HLA-E tetramer bound to natural killer (NK) cells and a small subset of T cells from peripheral blood. On transfectants, the tetramer bound to the CD94/NKG2A, CD94/NKGK2B and CD94/NKG2C NK cell receptors, but did not bind to the immunoglobulin family of NK cell receptors (KIR). Surface expression of HLA-E was enough to protect target cells from lysis by CD94/NKG2A+ NK-cell clones. A subset of HLA class I alleles has been shown to inhibit killing by CD94/NKG2A+ NK-cell clones. Only the HLA alleles that possess a leader peptide capable of upregulating HLA-E surface expression confer resistance to NK-cell-mediated lysis, implying that their action is mediated by HLA-E, the predominant ligand for the NK cell inhibitory receptor CD94/NKG2A.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                May 2006
                25 April 2006
                : 4
                : 5
                : e142
                Affiliations
                [1] 1Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
                [2] 2Program in Immunology, Harvard Medical School, Boston, Massachusetts, United States of America
                [3] 3Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
                National Jewish Medical and Research Center/Howard Hughes Medical Institute United States of America
                Article
                10.1371/journal.pbio.0040142
                1440944
                16623599
                b9789c85-2956-443e-953a-d7528aa7d41e
                Copyright: © 2006 Feng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 16 January 2006
                : 1 March 2006
                Categories
                Research Article
                Biophysics
                Immunology
                Molecular Biology/Structural Biology
                Biochemistry
                Homo (Human)
                Mammals
                Vertebrates
                Animals
                Eukaryotes

                Life sciences
                Life sciences

                Comments

                Comment on this article