20
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantification of simvastatin in mice plasma by near-infrared and chemometric analysis of spectral data

      research-article
      Drug Design, Development and Therapy
      Dove Medical Press
      alpha lipoic acid, bioavailability, non invasive, FTIR, pharmacokinetics

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Time and cost saving is an essential requirement in pharmacokinetics and bioequivalence studies. The aim of this study is to use a simple, fast, and nondestructive near-infrared transmission spectroscopic method to quantify simvastatin (SMV) concentrations in mice plasma and also to improve SMV bioavailability by using alpha-lipoic acid as a carrier. Calibration curve was built at a concentration range of 10–250 ng/mL, and HPLC method was considered as a reference method. A partial least squares regression analysis model was used for method development, which gave less root mean square error cross-validation. Comparison of SMV concentrations obtained from both instruments showed no statistically significant differences between all the data. Near-infrared spectroscopy was utilized as a rapid, simple accurate method to quantify drug–plasma concentrations without need for any extraction protocols, and the significant effect of alpha-lipoic acid as a novel carrier to enhance SMV bioavailability is also addressed.

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles.

          This study investigates formulation and process modifications to improve the versatility of the nanoprecipitation technique, particularly with respect to the encapsulation of hydrophilic drugs (e.g. proteins). More specifically, the principal objective was to explore the influence of such modifications on nanoparticle size. Selected parameters of the nanoprecipitation method, such as the solvent and the non-solvent nature, the solvent/non-solvent volume ratio and the polymer concentration, were varied so as to obtain polymeric nano-carriers. The feasibility of such a modified method was assessed and resulting unloaded nanoparticles were characterized with respect to their size and shape. It was shown that the mean particle size was closely dependent on the type of non-solvent selected. When alcohols were used, the final mean size increased in the sequence: methanol
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sildenafil citrate as oral solid lipid nanoparticles: a novel formula with higher bioavailability and sustained action for treatment of erectile dysfunction.

            The aim of this study was to prepare sildenafil citrate as solid lipid nanoparticles (SLNs), in order to find an innovative way for alleviating the disadvantages associated with commercially available sildenafil citrate tablets. These limitations include poor solubility and extensive first-pass metabolism, resulting in low (40%) bioavailability and short elimination half-life (4 h).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Survival of freeze-dried bacteria.

              The aim of this study was to investigate the survival of freeze-dried bacterial species stored at the International Patent Organism Depository (IPOD) and to elucidate the characteristics affecting survival. Bacterial strains were freeze-dried, sealed in ampoules under a vacuum (<1 Pa), and stored in the dark at 5 degrees C. The survival of a variety of species following storage for up to 20 years was analyzed. The survival of freeze-dried species was analyzed in terms of two stages, freeze-drying and storing. Nonmotile genera showed relatively high survival after freeze-drying. Motile genera with peritrichous flagella showed low survival rates after freeze-drying. Vibrio and Aeromonas, which produce numerous flagella, showed very low survival rates. In Lactobacillus, non-trehalose-fermenting species showed better survival rates after freeze-drying than did fermenting species, and those species with teichoic acid in the cell wall showed lower survival rates during storage than species with teichoic acid in the cell membrane. Human pathogenic species of Corynebacterium, Bacillus, Streptococcus, and Klebsiella showed lower survival rates during storage than nonpathogenic species within the same genus. Among Pseudomonas species, P. chlororaphis, the only species tested that forms levan from sucrose, showed the lowest survival rate during storage in the genus. Survival rates of Gram-negative species during storage tended to be lower than those of Gram-positive species, though Chryseobacterium meningosepticum had stable survival during storage. The conclusion is that smooth cell surfaces (i.e., no flagella) and lack of trehalose outside the cytoplasm improved survival rates after freeze-drying. Because desiccation is important for survival during storage, the presence of extracellular polysaccharides or teichoic acids is disadvantageous for long-term survival. The lower survival rates of freeze-dried Gram-negative bacteria compared with those of Gram-positive bacteria may be attributed to the thinner peptidoglycan layer and the presence of lipopolysaccharides on the cell wall in the former species.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2016
                05 August 2016
                : 10
                : 2507-2513
                Affiliations
                Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
                Author notes
                Correspondence: Usama A Fahmy, Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, PO Box 80200, Jeddah 21589, Saudi Arabia, Email usamafahmy@ 123456hotmail.com
                Article
                dddt-10-2507
                10.2147/DDDT.S114826
                4981156
                27540278
                b98836d5-86e7-4f46-87d4-70bc8bef1254
                © 2016 Fahmy. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                alpha lipoic acid,bioavailability,non invasive,ftir,pharmacokinetics

                Comments

                Comment on this article