148
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      LDL Receptor-Related Protein 5 (LRP5) Affects Bone Accrual and Eye Development

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In humans, low peak bone mass is a significant risk factor for osteoporosis. We report that LRP5, encoding the low-density lipoprotein receptor-related protein 5, affects bone mass accrual during growth. Mutations in LRP5 cause the autosomal recessive disorder osteoporosis-pseudoglioma syndrome (OPPG). We find that OPPG carriers have reduced bone mass when compared to age- and gender-matched controls. We demonstrate LRP5 expression by osteoblasts in situ and show that LRP5 can transduce Wnt signaling in vitro via the canonical pathway. We further show that a mutant-secreted form of LRP5 can reduce bone thickness in mouse calvarial explant cultures. These data indicate that Wnt-mediated signaling via LRP5 affects bone accrual during growth and is important for the establishment of peak bone mass.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage [published erratum appears in J Cell Biol 1995 Feb;128(4):following 713]

            The implantation of bone morphogenetic protein (BMP) into muscular tissues induces ectopic bone formation at the site of implantation. To investigate the mechanism underlying this process, we examined whether recombinant bone morphogenetic protein-2 (BMP-2) converts the differentiation pathway of the clonal myoblastic cell line, C2C12, into that of osteoblast lineage. Incubating the cells with 300 ng/ml of BMP- 2 for 6 d almost completely inhibited the formation of the multinucleated myotubes expressing troponin T and myosin heavy chain, and induced the appearance of numerous alkaline phosphatase (ALP)- positive cells. BMP-2 dose dependently induced ALP activity, parathyroid hormone (PTH)-dependent 3',5'-cAMP production, and osteocalcin production at concentrations above 100 ng/ml. The concentration of BMP-2 required to induce these osteoblastic phenotypes was the same as that required to almost completely inhibit myotube formation. Incubating primary muscle cells with 300 ng/ml of BMP-2 for 6 d also inhibited myotube formation, whereas induced ALP activity and osteocalcin production. Incubation with 300 ng/ml of BMP-2 suppressed the expression of mRNA for muscle creatine kinase within 6 h, whereas it induced mRNA expression for ALP, PTH/PTH-related protein (PTHrP) receptors, and osteocalcin within 24-48 h. BMP-2 completely inhibited the expression of myogenin mRNA by day 3. By day 3, BMP-2 also inhibited the expression of MyoD mRNA, but it was transiently stimulated 12 h after exposure to BMP-2. Expression of Id-1 mRNA was greatly stimulated by BMP-2. When C2C12 cells pretreated with BMP-2 for 6 d were transferred to a colony assay system in the absence of BMP-2, more than 84% of the colonies generated became troponin T-positive and ALP activity disappeared. TGF-beta 1 also inhibited myotube formation in C2C12 cells, and suppressed the expression of myogenin and MyoD mRNAs without inducing that of Id-1 mRNA. However, no osteoblastic phenotype was induced by TGF-beta 1 in C2C12 cells. TGF-beta 1 potentiated the inhibitory effect of BMP-2 on myotube formation, whereas TGF-beta 1 reduced ALP activity and osteocalcin production induced by BMP-2 in C2C12 cells. These results indicate that BMP-2 specifically converts the differentiation pathway of C2C12 myoblasts into that of osteoblast lineage cells, but that the conversion is not heritable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF.

              The vertebrate transcription factors TCF (T cell factor) and LEF (lymphocyte enhancer binding factor) interact with beta-catenin and are hypothesized to mediate Wingless/Wnt signaling. We have cloned a maternally expressed Drosophila TCF family member, dTCF. dTCF binds a canonical TCF DNA motif and interacts with the beta-catenin homolog Armadillo. Previous studies have identified two regions in Armadillo required for Wingless signaling. One of these interacts with dTCF, while the other constitutes a transactivation domain. Mutations in dTCF and expression of a dominant-negative dTCF transgene cause a segment polarity phenotype and affect expression of the Wingless target genes engrailed and Ultrabithorax. Epistasis analysis positions dTCF downstream of armadillo. The Armadillo-dTCF complex mediates Wingless signaling as a bipartite transcription factor.
                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                November 2001
                November 2001
                : 107
                : 4
                : 513-523
                Article
                10.1016/S0092-8674(01)00571-2
                11719191
                b995caee-afd7-48e3-a351-b74f9fffffa5
                © 2001

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article