96
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A reliable and effective method of DNA isolation from old human blood paper cards

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Blood paper cards provide an effective DNA storage method. In this study, we used three DNA dissolving reagents (Tris-EDTA [TE] buffer, Tris–HCl buffer, and water) and one common commercially available kit (DN131 from MRC Inc) to elute DNA from 105 human blood paper cards collected up to 10 years ago. These DNA samples were used as templates for amplification of a single nucleotide polymorphism (SNP, C125T) region of human caspase-12 by PCR and a specific Taqman genotyping assay using the same amount of DNA. We show that DNA isolated by Tris–HCl buffer has higher yield and quality in comparison to DN131 solution. PCR success rate to amplify caspase-12 C125T SNP using Tris–HCl is comparable to the method using DN131 (89.5% vs 87.6%). The Taqman genotyping success rate using Tris–HCl is higher than using DN131 (81.9% vs 70.5%). Using TE or water, PCR success rates are lower than using DN131 (73.3% [TE]; 72.4% [H 2O]), but Taqman genotyping success rates are comparable to the method using DN131 (70.5% [TE]; 79.1% [H 2O]). We concluded that using Tris–HCl is a reliable and effective method to elute DNA from old human blood paper cards. The crude DNA isolated by Tris–HCl can be used to study genetic polymorphisms in human populations.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study

          Summary Background Artemisinin-resistant falciparum malaria has arisen in western Cambodia. A concerted international effort is underway to contain artemisinin-resistant Plasmodium falciparum, but containment strategies are dependent on whether resistance has emerged elsewhere. We aimed to establish whether artemisinin resistance has spread or emerged on the Thailand–Myanmar (Burma) border. Methods In malaria clinics located along the northwestern border of Thailand, we measured six hourly parasite counts in patients with uncomplicated hyperparasitaemic falciparum malaria (≥4% infected red blood cells) who had been given various oral artesunate-containing regimens since 2001. Parasite clearance half-lives were estimated and parasites were genotyped for 93 single nucleotide polymorphisms. Findings 3202 patients were studied between 2001 and 2010. Parasite clearance half-lives lengthened from a geometric mean of 2·6 h (95% CI 2·5–2·7) in 2001, to 3·7 h (3·6–3·8) in 2010, compared with a mean of 5·5 h (5·2–5·9) in 119 patients in western Cambodia measured between 2007 and 2010. The proportion of slow-clearing infections (half-life ≥6·2 h) increased from 0·6% in 2001, to 20% in 2010, compared with 42% in western Cambodia between 2007 and 2010. Of 1583 infections genotyped, 148 multilocus parasite genotypes were identified, each of which infected between two and 13 patients. The proportion of variation in parasite clearance attributable to parasite genetics increased from 30% between 2001 and 2004, to 66% between 2007 and 2010. Interpretation Genetically determined artemisinin resistance in P falciparum emerged along the Thailand–Myanmar border at least 8 years ago and has since increased substantially. At this rate of increase, resistance will reach rates reported in western Cambodia in 2–6 years. Funding The Wellcome Trust and National Institutes of Health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity.

            The ratio of absorbance at 260 and 280 nm (the A260/280 ratio) is frequently used to assess the purity of RNA and DNA preparations. Data presented in this report demonstrate significant variability in the RNA A260/280 ratio when different sources of water were used to perform the spectrophotometric determinations. Adjusting the pH of water used for spectrophotometric analysis from approximately 5.4 to a slightly alkaline pH of 7.5-8.5 significantly increased RNA A260/280 ratios from approximately 1.5 to 2.0. Our studies revealed that changes in both the pH and ionic strength of the spectrophotometric solution influenced the A260/280 ratios. In addition, the ability to detect protein contamination was significantly improved when RNA was spectrophotometrically analyzed in an alkaline solution. UV spectral scans showed that the 260-nm RNA absorbance maximum observed in water was shifted by 2 nm to a lower wavelength when determinations were carried out in Na2HPO4 buffer at a pH of 8.5. We found RNA A260/280 ratios to be more reliable and reproducible when these spectrophotometric measurements were performed at pH 8.0-8.5 in 1-3 mM Na2HPO4 buffer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sequence-dependent thermodynamic parameters for locked nucleic acid (LNA)-DNA duplex formation.

              The design of modified nucleic acid probes, primers, and therapeutics is improved by considering their thermodynamics. Locked nucleic acid (LNA) is one of the most useful modified backbones, with incorporation of a single LNA providing a substantial increase in duplex stability. In this work, the hybridization DeltaH(o), DeltaS(o), and melting temperature (T(M)) were measured from absorbance melting curves for 100 duplex oligonucleotides with single internal LNA nucleotides on one strand, and the results provided DeltaDeltaH(o), DeltaDeltaS(o), DeltaDelta, and DeltaT(M) relative to reference DNA oligonucleotides. LNA pyrimidines contribute more stability than purines, especially A(L), but there is substantial context dependence for each LNA base. Both the 5' and 3' neighbors must be considered in predicting the effect of an LNA incorporation, with purine neighbors providing more stability. Enthalpy-entropy compensation in DeltaDeltaH(o) and DeltaDeltaS(o) is observed across the set of sequences, suggesting that LNA can stabilize the duplex by either preorganization or improved stacking, but not both simultaneously. Singular value decomposition analysis provides predictive sequence-dependent rules for hybridization of singly LNA-substituted DNA oligonucleotides to their all-DNA complements. The results are provided as sets of DeltaDeltaH(o), DeltaDeltaS(o), and DeltaDelta parameters for all 32 of the possible nearest neighbors for LNA+DNA:DNA hybridization (5' MX(L) and 5' X(L)N, where M, N, and X = A, C, G, or T and X(L) represents LNA). The parameters are applicable within the standard thermodynamic prediction algorithms. They provide T(M) estimates accurate to within 2 degrees C for LNA-containing oligonucleotides, which is significantly better accuracy than previously available.
                Bookmark

                Author and article information

                Contributors
                ysong@som.umaryland.edu
                abrahimfahs@gmail.com
                Charles.Feldman@wits.ac.za
                surajshah665@gmail.com
                yali.gu@yahoo.com
                y.wang7139@gmail.com
                machador@uic.edu
                r-wunderink@northwestern.edu
                chenjw@uic.edu
                Journal
                Springerplus
                Springerplus
                SpringerPlus
                Springer International Publishing (Cham )
                2193-1801
                19 November 2013
                19 November 2013
                2013
                : 2
                : 616
                Affiliations
                [ ]Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
                [ ]Section of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 USA
                [ ]Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
                [ ]Department of Medicine, Northwestern University, Chicago, IL 60611 USA
                Article
                669
                10.1186/2193-1801-2-616
                3847035
                24307984
                b999cca9-02ec-4745-957c-f2ee3fb0a73b
                © Song et al.; licensee Springer. 2013

                This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 August 2013
                : 7 November 2013
                Categories
                Research
                Custom metadata
                © The Author(s) 2013

                Uncategorized
                caspase-12,blood paper card,dna isolation,pcr,dn131
                Uncategorized
                caspase-12, blood paper card, dna isolation, pcr, dn131

                Comments

                Comment on this article