37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cell Size and the Initiation of DNA Replication in Bacteria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In eukaryotes, DNA replication is coupled to the cell cycle through the actions of cyclin-dependent kinases and associated factors. In bacteria, the prevailing view, based primarily from work in Escherichia coli, is that growth-dependent accumulation of the highly conserved initiator, DnaA, triggers initiation. However, the timing of initiation is unchanged in Bacillus subtilis mutants that are ∼30% smaller than wild-type cells, indicating that achievement of a particular cell size is not obligatory for initiation. Prompted by this finding, we re-examined the link between cell size and initiation in both E. coli and B. subtilis. Although changes in DNA replication have been shown to alter both E. coli and B. subtilis cell size, the converse (the effect of cell size on DNA replication) has not been explored. Here, we report that the mechanisms responsible for coordinating DNA replication with cell size vary between these two model organisms. In contrast to B. subtilis, small E. coli mutants delayed replication initiation until they achieved the size at which wild-type cells initiate. Modest increases in DnaA alleviated the delay, supporting the view that growth-dependent accumulation of DnaA is the trigger for replication initiation in E. coli. Significantly, although small E. coli and B. subtilis cells both maintained wild-type concentration of DnaA, only the E. coli mutants failed to initiate on time. Thus, rather than the concentration, the total amount of DnaA appears to be more important for initiation timing in E. coli. The difference in behavior of the two bacteria appears to lie in the mechanisms that control the activity of DnaA.

          Author Summary

          DNA replication must be coordinated with growth and division to ensure the viability of cells and organisms. In bacteria, it is believed that cell growth–dependent accumulation of the initiator of DNA replication, DnaA, to critical levels determines the timing of initiation. This view is based primarily on data from the model bacterium E. coli, which initiates replication only upon achieving a particular size. However, recent data from another model organism, B. subtilis, where DnaA is also rate limiting for initiation, suggests that changes in cell size may not impact the timing of DNA replication. This finding prompted us to revisit the relationship between cell size and DNA replication in E. coli. While previous studies examined perturbations in DNA replication on cell size, we instead determined the consequences of cell size defects on DNA replication. This converse approach led to the conclusion that, irrespective of size, DnaA needs to accumulate to a critical amount to trigger initiation in E. coli, as is generally believed to be the case. In contrast, small B. subtilis cells could initiate replication with amounts of DnaA ∼30% less than wild type. Thus, while DnaA is rate limiting for initiation in both organisms, the mechanisms controlling its activity may vary in different bacteria.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          A master regulator for biofilm formation by Bacillus subtilis.

          Wild strains of Bacillus subtilis are capable of forming architecturally complex communities of cells known as biofilms. Critical to biofilm formation is the eps operon, which is believed to be responsible for the biosynthesis of an exopolysaccharide that binds chains of cells together in bundles. We report that transcription of eps is under the negative regulation of SinR, a repressor that was found to bind to multiple sites in the regulatory region of the operon. Mutations in sinR bypassed the requirement in biofilm formation of two genes of unknown function, ylbF and ymcA, and sinI, which is known to encode an antagonist of SinR. We propose that these genes are members of a pathway that is responsible for counteracting SinR-mediated repression. We further propose that SinR is a master regulator that governs the transition between a planktonic state in which the bacteria swim as single cells in liquid or swarm in small groups over surfaces, and a sessile state in which the bacteria adhere to each other to form bundled chains and assemble into multicellular communities.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Chromosome replication and the division cycle of Escherichia coli B/r.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell cycle regulation of DNA replication.

              Eukaryotic DNA replication is regulated to ensure all chromosomes replicate once and only once per cell cycle. Replication begins at many origins scattered along each chromosome. Except for budding yeast, origins are not defined DNA sequences and probably are inherited by epigenetic mechanisms. Initiation at origins occurs throughout the S phase according to a temporal program that is important in regulating gene expression during development. Most replication proteins are conserved in evolution in eukaryotes and archaea, but not in bacteria. However, the mechanism of initiation is conserved and consists of origin recognition, assembly of prereplication (pre-RC) initiative complexes, helicase activation, and replisome loading. Cell cycle regulation by protein phosphorylation ensures that pre-RC assembly can only occur in G1 phase, whereas helicase activation and loading can only occur in S phase. Checkpoint regulation maintains high fidelity by stabilizing replication forks and preventing cell cycle progression during replication stress or damage.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                March 2012
                March 2012
                1 March 2012
                : 8
                : 3
                : e1002549
                Affiliations
                [1 ]Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
                [2 ]Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
                Agency for Science, Technology, and Research, Singapore
                Author notes

                Conceived and designed the experiments: NSH RK DKC PAL. Performed the experiments: NSH RK. Analyzed the data: NSH RK DKC PAL. Contributed reagents/materials/analysis tools: NSH RK DKC PAL. Wrote the paper: NSH RK DKC PAL.

                Article
                PGENETICS-D-11-01891
                10.1371/journal.pgen.1002549
                3291569
                22396664
                b9ab0d52-d89b-4bc7-95c6-308ad9693ace
                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
                History
                : 2 September 2011
                : 6 January 2012
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Microbiology

                Genetics
                Genetics

                Comments

                Comment on this article