13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lesinurad: what the nephrologist should know

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lesinurad is an oral inhibitor of the monocarboxylic/urate transporter URAT1 encoded by the SLC22A12 gene. Market authorization was granted in February 2016 in Europe and December 2015 in the USA. As a potentially nephrotoxic uricosuric drug acting on the kidney, nephrologists should become familiar with its indications and safety profile. The approved indication is treatment of gout in combination with a xanthine oxidase (XO) inhibitor in adult patients who have not achieved target serum uric acid levels with an XO inhibitor alone. It is not indicated for asymptomatic hyperuricaemia or for patients with estimated creatinine clearance <45 mL/min. The only authorized daily dose is 200 mg and cannot be exceeded because of the nephrotoxicity risk. Nephrotoxicity is thought to be related to uricosuria. At the 200 mg/day dose, serum creatinine more than doubled in 1.8% of lesinurad patients (versus 0% in placebo) and in 11% of these it was not reversible. In addition, it is subject to a risk management plan given the potential association with cardiovascular events. In randomized clinical trials, the association of lesinurad with either allopurinol or febuxostat achieved a greater reduction in serum uric acid (∼1 mg/dL lower) than the XO inhibitors alone, and this allowed the serum uric acid target to be met in a higher proportion of patients, which was the primary endpoint. However, no clinical differences were observed in gout flares or tophi, although these were not the primary endpoints.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular identification of a renal urate anion exchanger that regulates blood urate levels.

          Urate, a naturally occurring product of purine metabolism, is a scavenger of biological oxidants implicated in numerous disease processes, as demonstrated by its capacity of neuroprotection. It is present at higher levels in human blood (200 500 microM) than in other mammals, because humans have an effective renal urate reabsorption system, despite their evolutionary loss of hepatic uricase by mutational silencing. The molecular basis for urate handling in the human kidney remains unclear because of difficulties in understanding diverse urate transport systems and species differences. Here we identify the long-hypothesized urate transporter in the human kidney (URAT1, encoded by SLC22A12), a urate anion exchanger regulating blood urate levels and targeted by uricosuric and antiuricosuric agents (which affect excretion of uric acid). Moreover, we provide evidence that patients with idiopathic renal hypouricaemia (lack of blood uric acid) have defects in SLC22A12. Identification of URAT1 should provide insights into the nature of urate homeostasis, as well as lead to the development of better agents against hyperuricaemia, a disadvantage concomitant with human evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Sugar, Uric Acid, and the Etiology of Diabetes and Obesity

            The intake of added sugars, such as from table sugar (sucrose) and high-fructose corn syrup has increased dramatically in the last hundred years and correlates closely with the rise in obesity, metabolic syndrome, and diabetes. Fructose is a major component of added sugars and is distinct from other sugars in its ability to cause intracellular ATP depletion, nucleotide turnover, and the generation of uric acid. In this article, we revisit the hypothesis that it is this unique aspect of fructose metabolism that accounts for why fructose intake increases the risk for metabolic syndrome. Recent studies show that fructose-induced uric acid generation causes mitochondrial oxidative stress that stimulates fat accumulation independent of excessive caloric intake. These studies challenge the long-standing dogma that “a calorie is just a calorie” and suggest that the metabolic effects of food may matter as much as its energy content. The discovery that fructose-mediated generation of uric acid may have a causal role in diabetes and obesity provides new insights into pathogenesis and therapies for this important disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of allopurinol in chronic kidney disease progression and cardiovascular risk.

              Hyperuricemia is associated with hypertension, inflammation, renal disease progression, and cardiovascular disease. However, no data are available regarding the effect of allopurinol in patients with chronic kidney disease. We conducted a prospective, randomized trial of 113 patients with estimated GFR (eGFR) <60 ml/min. Patients were randomly assigned to treatment with allopurinol 100 mg/d (n = 57) or to continue the usual therapy (n = 56). Clinical, biochemical, and inflammatory parameters were measured at baseline and at 6, 12, and 24 months of treatment. The objectives of study were: (1) renal disease progression; (2) cardiovascular events; and (3) hospitalizations of any causes. Serum uric acid and C-reactive protein levels were significantly decreased in subjects treated with allopurinol. In the control group, eGFR decreased 3.3 +/- 1.2 ml/min per 1.73 m(2), and in the allopurinol group, eGFR increased 1.3 +/- 1.3 ml/min per 1.73 m(2) after 24 months. Allopurinol treatment slowed down renal disease progression independently of age, gender, diabetes, C-reactive protein, albuminuria, and renin-angiotensin system blockers use. After a mean follow-up time of 23.4 +/- 7.8 months, 22 patients suffered a cardiovascular event. Diabetes mellitus, previous coronary heart disease, and C-reactive protein levels increased cardiovascular risk. Allopurinol treatment reduces risk of cardiovascular events in 71% compared with standard therapy. Allopurinol decreases C-reactive protein and slows down the progression of renal disease in patients with chronic kidney disease. In addition, allopurinol reduces cardiovascular and hospitalization risk in these subjects.
                Bookmark

                Author and article information

                Journal
                Clin Kidney J
                Clin Kidney J
                ckj
                Clinical Kidney Journal
                Oxford University Press
                2048-8505
                2048-8513
                October 2017
                26 May 2017
                26 May 2017
                : 10
                : 5
                : 679-687
                Affiliations
                [1 ]Department of Nephrology, IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
                [2 ]Fundacion Renal Iñigo Alvarez de Toledo (FRIAT), Madrid, Spain
                [3 ]REDINREN, Madrid, Spain
                [4 ]Servicio de Nefrología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
                Author notes
                Correspondence and offprint requests to: Alberto Ortiz; E-mail: aortiz@ 123456fjd.es
                Article
                sfx036
                10.1093/ckj/sfx036
                5622894
                28979780
                b9b3ba96-d0b8-4ab9-8b43-2c766fa81961
                © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 08 March 2017
                : 03 April 2017
                Page count
                Pages: 9
                Categories
                Cardiovascular Risk

                Nephrology
                cardiovascular risk,gout,lesinurad,nephrotoxicity,probenecid,urat1,uric acid,uricosuric
                Nephrology
                cardiovascular risk, gout, lesinurad, nephrotoxicity, probenecid, urat1, uric acid, uricosuric

                Comments

                Comment on this article