+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Development of reverse genetics systems for bluetongue virus: recovery of infectious virus from synthetic RNA transcripts.

      Journal of Biology

      Animals, Bluetongue virus, genetics, isolation & purification, pathogenicity, physiology, Cell Line, Clone Cells, Cricetinae, DNA, Complementary, Genes, Viral, RNA, Viral, Virus Cultivation, methods

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Bluetongue virus (BTV), an insect-vectored emerging pathogen of both wild ruminants and livestock, has had a severe economic impact in agriculture in many parts of the world. The investigation of BTV replication and pathogenesis has been hampered by the lack of a reverse genetics system. Recovery of infectious BTV is possible by the transfection of permissive cells with the complete set of 10 purified viral mRNAs derived in vitro from transcribing cores (M. Boyce and P. Roy, J. Virol. 81:2179-2186, 2007). Here, we report that in vitro synthesized T7 transcripts, derived from cDNA clones, can be introduced into the genome of BTV using a mixture of T7 transcripts and core-derived mRNAs. The replacement of genome segment 10 and the simultaneous replacement of segments 2 and 5 encoding the two immunologically important outer capsid proteins, VP2 and VP5, are described. Further, we demonstrate the recovery of infectious BTV entirely from T7 transcripts, proving that synthetic transcripts synthesized in the presence of cap analogue can functionally substitute for viral transcripts at all stages of the BTV replication cycle. The generation of BTV with a fully defined genome permits the recovery of mutations in a defined genetic background. The ability to generate specific mutants provides a new tool to investigate the BTV replication cycle as well as permitting the generation of designer vaccine strains, which are greatly needed in many countries.

          Related collections

          Author and article information



          Comment on this article