12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Contribution of Sex and Cellular Context in the Regulation of Brain Corticosteroid Receptors following Restraint Stress

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The two subtypes of corticosterone receptors in the rat brain play a pivotal role in the modulation of the stress response. Appropriate control of their gene expression is therefore critical for the maintenance of cellular and organism homeostasis. In this study, we investigated the contribution of gender and of the cellular environment of certain brain areas to the expression of both types of corticosteroid receptors, following restraint stress. Adult Wistar rats of both sexes were subjected to acute, chronic or to a combined chronic plus acute stress regimen, and the expression of glucocorticoid and mineralocorticoid receptors was evaluated in their hippocampus, hypothalamus, pituitary and frontal cortex, by using Northern blot analysis. Significant sex differences were observed in the first three brain areas examined as to the stress-induced expression of corticosteroid receptors. Among these, females showed a distinct mechanism of regulating glucocorticoid/mineralocorticoid receptor ratio in the hippocampus upon chronic stress, while the female hypothalamus was more prone than the male to changing corticosteroid receptor expression in response to restraint stress. In another set of experiments, we assessed the influence of ovarian steroids on stress-induced corticosteroid receptor expression in the above brain areas by analyzing ovariectomized rats exposed to short-term restraint. Our results showed that although ovarian steroids affect the stress-induced expression of receptor genes in a region-specific manner, their elimination does not appear to lead to the male pattern of expression. These findings provide further evidence for the existence of both regional and gender specificity in the regulation of brain and pituitary corticosteroid receptors following stress, and support the hypothesis of a distinct male and female neuroendocrine axis in response to stress.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.

          A new method of total RNA isolation by a single extraction with an acid guanidinium thiocyanate-phenol-chloroform mixture is described. The method provides a pure preparation of undegraded RNA in high yield and can be completed within 4 h. It is particularly useful for processing large numbers of samples and for isolation of RNA from minute quantities of cells or tissue samples.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Maternal Care, Hippocampal Glucocorticoid Receptors, and Hypothalamic-Pituitary-Adrenal Responses to Stress

            D. Liu (1997)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis.

              The rapid activation of stress-responsive neuroendocrine systems is a basic reaction of animals to perturbations in their environment. One well-established response is that of the hypothalamo-pituitary-adrenal (HPA) axis. In rats, corticosterone is the major adrenal steroid secreted and is released in direct response to adrenocorticotropin (ACTH) secreted from the anterior pituitary gland. ACTH in turn is regulated by the hypothalamic factor, corticotropin-releasing hormone. A sex difference exists in the response of the HPA axis to stress, with females reacting more robustly than males. It has been demonstrated that in both sexes, products of the HPA axis inhibit reproductive function. Conversely, the sex differences in HPA function are in part due to differences in the circulating gonadal steroid hormone milieu. It appears that testosterone can act to inhibit HPA function, whereas estrogen can enhance HPA function. One mechanism by which androgens and estrogens modulate stress responses is through the binding to their cognate receptors in the central nervous system. The distribution and regulation of androgen and estrogen receptors within the CNS suggest possible sites and mechanisms by which gonadal steroid hormones can influence stress responses. In the case of androgens, data suggest that the control of the hypothalamic paraventricular nucleus is mediated trans-synaptically. For estrogen, modulation of the HPA axis may be due to changes in glucocorticoid receptor-mediated negative feedback mechanisms. The results of a variety of studies suggest that gonadal steroid hormones, particularly testosterone, modulate HPA activity in an attempt to prevent the deleterious effects of HPA activation on reproductive function.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2000
                June 2000
                23 June 2000
                : 71
                : 6
                : 343-353
                Affiliations
                Laboratory of Histology and Embryology, Athens University Medical School, Athens, Greece
                Article
                54555 Neuroendocrinology 2000;71:343–353
                10.1159/000054555
                10878496
                b9e14bce-1aa4-42e9-9624-d8884281516d
                © 2000 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 5, Tables: 2, References: 47, Pages: 11
                Categories
                Stress, Corticotropin and Central Effects ofAdrenal Steroids

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Molecular neuroendocrinology,Adrenal steroid receptors,Sex dimorphism,Stress,Adrenal steroids

                Comments

                Comment on this article