18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      iPSCs-based generation of vascular cells: reprogramming approaches and applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent advances in the field of induced pluripotent stem cells (iPSCs) research have opened a new avenue for stem cell-based generation of vascular cells. Based on their growth and differentiation potential, human iPSCs constitute a well-characterized, generally unlimited cell source for the mass generation of lineage- and patient-specific vascular cells without any ethical concerns. Human iPSCs-derived vascular cells are perfectly suited for vascular disease modeling studies because patient-derived iPSCs possess the disease-causing mutation, which might be decisive for full expression of the disease phenotype. The application of vascular cells for autologous cell replacement therapy or vascular engineering derived from immune-compatible iPSCs possesses huge clinical potential, but the large-scale production of vascular-specific lineages for regenerative cell therapies depends on well-defined, highly reproducible culture and differentiation conditions. This review will focus on the different strategies to derive vascular cells from human iPSCs and their applications in regenerative therapy, disease modeling and drug discovery approaches.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: found
          • Article: not found

          miR-145 and miR-143 Regulate Smooth Muscle Cell Fate Decisions

          SUMMARY microRNAs are regulators of myriad cellular events, but evidence for a single microRNA that can efficiently differentiate multipotent cells into a specific lineage or regulate direct reprogramming of cells into an alternate cell fate has been elusive. Here, we show that miR-145 and miR-143 are co-transcribed in multipotent cardiac progenitors before becoming localized to smooth muscle cells, including neural crest stem cell–derived vascular smooth muscle cells. miR-145 and miR-143 were direct transcriptional targets of serum response factor, myocardin and Nkx2.5, and were downregulated in injured or atherosclerotic vessels containing proliferating, less differentiated smooth muscle cells. miR-145 was necessary for myocardin-induced reprogramming of adult fibroblasts into smooth muscle cells and sufficient to induce differentiation of multipotent neural crest stem cells into vascular smooth muscle. Furthermore, miR-145 and miR-143 cooperatively targeted a network of transcription factors, including Klf4, myocardin, and Elk-1 to promote differentiation and repress proliferation of smooth muscle cells. These findings demonstrate that miR-145 can direct the smooth muscle fate and that miR-145 and miR-143 function to regulate the quiescent versus proliferative phenotype of smooth muscle cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phenotypic heterogeneity of the endothelium: II. Representative vascular beds.

            Endothelial cells, which form the inner cellular lining of blood vessels and lymphatics, display remarkable heterogeneity in structure and function. This is the second of a 2-part review on the phenotypic heterogeneity of blood vessel endothelial cells. The first part discusses the scope, the underlying mechanisms, and the diagnostic and therapeutic implications of phenotypic heterogeneity. Here, these principles are applied to an understanding of organ-specific phenotypes in representative vascular beds including arteries and veins, heart, lung, liver, and kidney. The goal is to underscore the importance of site-specific properties of the endothelium in mediating homeostasis and focal vascular pathology, while at the same time emphasizing the value of approaching the endothelium as an integrated system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tissue-engineered lungs for in vivo implantation.

              Because adult lung tissue has limited regeneration capacity, lung transplantation is the primary therapy for severely damaged lungs. To explore whether lung tissue can be regenerated in vitro, we treated lungs from adult rats using a procedure that removes cellular components but leaves behind a scaffold of extracellular matrix that retains the hierarchical branching structures of airways and vasculature. We then used a bioreactor to culture pulmonary epithelium and vascular endothelium on the acellular lung matrix. The seeded epithelium displayed remarkable hierarchical organization within the matrix, and the seeded endothelial cells efficiently repopulated the vascular compartment. In vitro, the mechanical characteristics of the engineered lungs were similar to those of native lung tissue, and when implanted into rats in vivo for short time intervals (45 to 120 minutes) the engineered lungs participated in gas exchange. Although representing only an initial step toward the ultimate goal of generating fully functional lungs in vitro, these results suggest that repopulation of lung matrix is a viable strategy for lung regeneration.
                Bookmark

                Author and article information

                Contributors
                +49-201-723 83342 , Diana.Klein@uk-essen.de
                Journal
                Cell Mol Life Sci
                Cell. Mol. Life Sci
                Cellular and Molecular Life Sciences
                Springer International Publishing (Cham )
                1420-682X
                1420-9071
                14 December 2017
                14 December 2017
                2018
                : 75
                : 8
                : 1411-1433
                Affiliations
                ISNI 0000 0001 2187 5445, GRID grid.5718.b, Institute for Cell Biology (Cancer Research), University Hospital Essen, , University of Duisburg-Essen, ; Virchowstr. 173, 45122 Essen, Germany
                Article
                2730
                10.1007/s00018-017-2730-7
                5852192
                29243171
                b9e1beab-eb9c-4bbe-bdab-6c6a61219eac
                © The Author(s) 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 6 July 2017
                : 8 December 2017
                : 11 December 2017
                Categories
                Review
                Custom metadata
                © Springer International Publishing AG, part of Springer Nature 2018

                Molecular biology
                ipsc,reprogramming,differentiation,vascular cell,endothelial cell,smooth muscle cell
                Molecular biology
                ipsc, reprogramming, differentiation, vascular cell, endothelial cell, smooth muscle cell

                Comments

                Comment on this article