38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gout and risk of chronic kidney disease and nephrolithiasis: meta-analysis of observational studies

      research-article
      , , ,
      Arthritis Research & Therapy
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          To determine the prevalence of chronic kidney disease and nephrolithiasis in people with gout, and the association between gout and prevalent or incident chronic kidney disease and nephrolithiasis.

          Methods

          Systematic review and meta-analysis of epidemiological studies. Data sources; MEDLINE, EMBASE and CINAHL databases, hand-searched reference lists, citation history and contact with authors. Eligibility criteria: cohort, case–control or cross-sectional studies which examined the occurrence of chronic kidney disease or nephrolithiasis amongst adults with gout (with or without a non-gout comparator group) in primary care or general population samples. Prevalence and risk estimate meta-analyses were performed using a random-effects model.

          Results

          Seventeen studies were included in the meta-analysis (chronic kidney disease n = 7, nephrolithiasis n = 8, both n = 2). Pooled prevalence estimates of chronic kidney disease stage ≥3 and self-reported lifetime nephrolithiasis in people with gout were 24% (95% confidence interval 19% to 28%) and 14% (95% CI 12% to 17%) respectively. Gout was associated with both chronic kidney disease (pooled adjusted odds ratio 2.41, 95% confidence interval 1.86 to 3.11) and self-reported lifetime nephrolithiasis (1.77, 1.43 to 2.19).

          Conclusions

          Chronic kidney disease and nephrolithiasis are commonly found amongst patients with gout. Gout is independently associated with both chronic kidney disease and nephrolithiasis. Patients with gout should be actively screened for chronic kidney disease and its consequences.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Preliminary criteria for the classification of the acute arthritis of primary gout.

          The American Rheumatism Association sub-committe on classification criteria for gout analyzed data from more than 700 patients with gout, pseudogout, rheumatoid arthritis, or septic arthritis. Criteria for classifying a patient as having gout were a) the presence of characteristic urate crystals in the joint fluid, and/or b) a topus proved to contain urate crystals by chemical or polarized light microscopic means, and/or c) the presence of six of the twelve clinical, laboratory, and X-ray phenomena listed in Table 5.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Rising burden of gout in the UK but continuing suboptimal management: a nationwide population study

            Objectives To describe trends in the epidemiology of gout and patterns of urate-lowering treatment (ULT) in the UK general population from 1997 to 2012. Methods We used the Clinical Practice Research Datalink to estimate the prevalence and incidence of gout for each calendar year from 1997 to 2012. We also investigated the pattern of gout management for both prevalent and incident gout patients. Results In 2012, the prevalence of gout was 2.49% (95% CI 2.48% to 2.51%) and the incidence was 1.77 (95% CI 1.73 to 1.81) per 1000 person-years. Prevalence and incidence both were significantly higher in 2012 than in 1997, with a 63.9% increase in prevalence and 29.6% increase in incidence over this period. Regions with highest prevalence and incidence were the North East and Wales. Among prevalent gout patients in 2012, only 48.48% (95% CI 48.08% to 48.89%) were being consulted specifically for gout or treated with ULT and of these 37.63% (95% CI 37.28% to 38.99%) received ULT. In addition, only 18.6% (95% CI 17.6% to 19.6%) of incident gout patients received ULT within 6 months and 27.3% (95% CI 26.1% to 28.5%) within 12 months of diagnosis. The management of prevalent and incident gout patients remained essentially the same during the study period, although the percentage of adherent patients improved from 28.28% (95% CI 27.33% to 29.26%) in 1997 to 39.66% (95% CI 39.11% to 40.22%) in 2012. Conclusions In recent years, both the prevalence and incidence of gout have increased significantly in the UK. Suboptimal use of ULT has not changed between 1997 and 2012. Patient adherence has improved during the study period, but it remains poor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Risk factors for end-stage renal disease: 25-year follow-up.

              Few cohort studies have focused on risk factors for end-stage renal disease (ESRD). This investigation evaluated the prognostic value of several potential novel risk factors for ESRD after considering established risk factors. We studied 177 570 individuals from a large integrated health care delivery system in northern California who volunteered for health checkups between June 1, 1964, and August 31, 1973. Initiation of ESRD treatment was ascertained using US Renal Data System registry data through December 31, 2000. A total of 842 cases of ESRD were observed during 5 275 957 person-years of follow-up. This comprehensive evaluation confirmed the importance of established risk factors, including the following: male sex, older age, proteinuria, diabetes mellitus, lower educational attainment, and African American race, as well as higher blood pressure, body mass index, and serum creatinine level. The 2 most potent risk factors were proteinuria and excess weight. For proteinuria, the adjusted hazard ratios (HRs) were 7.90 (95% confidence interval [CI], 5.35-11.67) for 3 to 4+ on urine dipstick, 3.59 (2.82-4.57) for 1 to 2+ on urine dipstick, and 2.37 (1.79-3.14) for trace vs negative on urine dipstick. For excess weight, the HRs were 4.39 (95% CI, 3.38-5.70) for class 2 to class 3 obesity, 3.11 (2.51-3.84) for class 1 obesity, and 1.65 (1.39-1.97) for overweight vs normal weight. Furthermore, several independent novel risk factors for ESRD were identified, including lower hemoglobin level (1.33 [1.08-1.63] for lowest vs highest quartile), higher serum uric acid level (2.14 [1.65-2.77] for highest vs lowest quartile), self-reported history of nocturia (1.36 [1.17-1.58]), and family history of kidney disease (HR, 1.40 [95% CI, 1.02-1.90]). We confirmed the importance of established ESRD risk factors in this large cohort with broad sex and racial/ethnic representation. Lower hemoglobin level, higher serum uric acid level, self-reported history of nocturia, and family history of kidney disease are independent risk factors for ESRD.
                Bookmark

                Author and article information

                Contributors
                mattjroughley@gmail.com
                j.belcher@keele.ac.uk
                c.d.mallen@keele.ac.uk
                e.roddy@keele.ac.uk
                Journal
                Arthritis Res Ther
                Arthritis Research & Therapy
                BioMed Central (London )
                1478-6354
                1478-6362
                1 April 2015
                1 April 2015
                2015
                : 17
                : 1
                : 90
                Affiliations
                [ ]School of Medicine, Keele University, Keele, Staffordshire ST5 5BG UK
                [ ]School of Computing and Mathematics, Keele University, Keele, Staffordshire ST5 5BG UK
                [ ]Arthritis Research UK Primary Care Centre, Keele University, Keele, Staffordshire ST5 5BG UK
                Article
                610
                10.1186/s13075-015-0610-9
                4404569
                25889144
                b9e22f4f-4650-4b0e-93e9-9bcc85b5ca43
                © Roughley et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 6 January 2015
                : 24 March 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Orthopedics
                Orthopedics

                Comments

                Comment on this article