0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Time series and beyond: multifaceted plankton research at a marine Mediterranean LTER site

      , , , , ,

      Nature Conservation

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plankton are a pivotal component of the diversity and functioning of coastal marine ecosystems. A long time-series of observations is the best tool to trace their patterns and variability over multiple scales, ultimately providing a sound foundation for assessing, modelling and predicting the effects of anthropogenic and natural environmental changes on pelagic communities. At the same time, a long time-series constitutes a formidable asset for different kinds of research on specific questions that emerge from the observations, whereby the results of these complementary studies provide precious interpretative tools that augment the informative value of the data collected. In this paper, we review more than 140 studies that have been developed around a Mediterranean plankton time series gathered in the Gulf of Naples at the station LTER-MC since 1984. These studies have addressed different topics concerning marine plankton, which have included: i) seasonal patterns and trends; ii) taxonomic diversity, with a focus on key or harmful algal species and the discovery of many new taxa; iii) molecular diversity of selected species, groups of species or the whole planktonic community; iv) life cycles of several phyto- and zooplankton species; and v) interactions among species through trophic relationships, parasites and viruses. Overall, the products of this research demonstrate the great value of time series besides the record of fluctuations and trends, and highlight their primary role in the development of the scientific knowledge of plankton much beyond the local scale.

          Related collections

          Most cited references 146

          • Record: found
          • Abstract: found
          • Article: not found

          Global dispersal of free-living microbial eukaryote species.

          The abundance of individuals in microbial species is so large that dispersal is rarely (if ever) restricted by geographical barriers. This "ubiquitous" dispersal requires an alternative view of the scale and dynamics of biodiversity at the microbial level, wherein global species number is relatively low and local species richness is always sufficient to drive ecosystem functions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Patterns of rare and abundant marine microbial eukaryotes.

            Biological communities are normally composed of a few abundant and many rare species. This pattern is particularly prominent in microbial communities, in which most constituent taxa are usually extremely rare. Although abundant and rare subcommunities may present intrinsic characteristics that could be crucial for understanding community dynamics and ecosystem functioning, microbiologists normally do not differentiate between them. Here, we investigate abundant and rare subcommunities of marine microbial eukaryotes, a crucial group of organisms that remains among the least-explored biodiversity components of the biosphere. We surveyed surface waters of six separate coastal locations in Europe, independently considering the picoplankton, nanoplankton, and microplankton/mesoplankton organismal size fractions. Deep Illumina sequencing of the 18S rRNA indicated that the abundant regional community was mostly structured by organismal size fraction, whereas the rare regional community was mainly structured by geographic origin. However, some abundant and rare taxa presented similar biogeography, pointing to spatiotemporal structure in the rare microeukaryote biosphere. Abundant and rare subcommunities presented regular proportions across samples, indicating similar species-abundance distributions despite taxonomic compositional variation. Several taxa were abundant in one location and rare in other locations, suggesting large oscillations in abundance. The substantial amount of metabolically active lineages found in the rare biosphere suggests that this subcommunity constitutes a diversity reservoir that can respond rapidly to environmental change. We propose that marine planktonic microeukaryote assemblages incorporate dynamic and metabolically active abundant and rare subcommunities, with contrasting structuring patterns but fairly regular proportions, across space and time. Copyright © 2014 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reproductive isolation among sympatric cryptic species in marine diatoms.

              Pseudo-nitzschia is a marine cosmopolitan genus of chain-forming planktonic diatoms. As for the vast majority of phytoplankton organisms, species identification within this genus mostly relies upon morphological features. Taxa were initially identified based on cell shape and gross morphology of their composite silica cell wall, called the frustule. Yet, observations of the frustule in electron microscopy showed many additional characters for species identification and results of molecular studies have demonstrated that genetically distinct groups might exist within morpho-species. However, these studies have not addressed the biological meaning of these genetic differences. Here, we bridge that gap by comparing ultrastructural features and sequence data (three ribosomal and one plastid marker) of 95 strains with results of mating experiments among these strains. Experiments were performed on two morphologically distinct entities: P. delicatissima and P. pseudodelicatissima. Each of the two entities consisted of multiple genetically distinct and reproductively isolated taxa, all occurring in sympatry: P. delicatissima was composed of three phylogenetic and reproductively distinct groups, whereas P. pseudodelicatissima consisted of up to five. Once these taxa had been defined both genetically and biologically, subtle ultrastructural differences could be detected as well. Our findings not only show that cryptic genetic variants abound in sympatry, but also that they are reproductively isolated and, therefore, biologically distinct units.
                Bookmark

                Author and article information

                Journal
                Nature Conservation
                NC
                Pensoft Publishers
                1314-3301
                1314-6947
                May 03 2019
                May 03 2019
                : 34
                : 273-310
                Article
                10.3897/natureconservation.34.30789
                © 2019

                Comments

                Comment on this article