197
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions.

          DOI: http://dx.doi.org/10.7554/eLife.10250.001

          eLife digest

          Cancer cells behave differently from healthy cells in many ways. Healthy cells rely on structures called mitochondria to provide them with energy via a process that requires oxygen. However cancer cells don’t rely on this process, and instead release energy by breaking down sugars outside of the mitochondria. This may explain why cancer cells are able to thrive even when little oxygen is available.

          Cancer cells also interact with neighboring cells called fibroblasts, which are a major part of a tumor’s microenvironment, and recruit them into the tumors. The fibroblasts communicate with cancer cells, in part, by releasing chemical messengers packaged into tiny bubble-like structures called exosomes. Recent studies have suggested that these exosomes may help cancer cells to thrive, but there are many questions remaining about how they might do this.

          Now, Zhao et al. show that the fibroblasts smuggle essential nutrients to cancer cells via the exosomes and disable oxygen-based energy production in cancer cells. First, exosomes released by cancer-associated fibroblasts from people with prostate cancer were collected and marked with a green dye. Next, the green-labeled exosomes were mixed with prostate cancer cells, and shown to be absorbed by the cells. Oxygen-based energy release was dramatically reduced in the exosome-absorbing cells, and sugar-based energy release increased.

          Next, Zhao et al examined the contents of the exosomes, and found that they contain the building blocks of proteins, fats, and other important molecules. Next, the experiments revealed that both prostate cancer and pancreatic cancer cells deprived of nutrients can use these smuggled resources to continue to grow. Importantly, this process did not involve the protein Kras, which previous studies had show helps cancer cells absorb nutrients. These findings suggest that preventing exosomes from smuggling resources to starving cancer cells might be an effective strategy to treat cancers.

          DOI: http://dx.doi.org/10.7554/eLife.10250.002

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found

          Oncogenic Kras Maintains Pancreatic Tumors through Regulation of Anabolic Glucose Metabolism

          Tumor maintenance relies on continued activity of driver oncogenes, although their rate-limiting role is highly context dependent. Oncogenic Kras mutation is the signature event in pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible Kras(G12D)-driven PDAC mouse model establishes that advanced PDAC remains strictly dependent on Kras(G12D) expression. Transcriptome and metabolomic analyses indicate that Kras(G12D) serves a vital role in controlling tumor metabolism through stimulation of glucose uptake and channeling of glucose intermediates into the hexosamine biosynthesis and pentose phosphate pathways (PPP). These studies also reveal that oncogenic Kras promotes ribose biogenesis. Unlike canonical models, we demonstrate that Kras(G12D) drives glycolysis intermediates into the nonoxidative PPP, thereby decoupling ribose biogenesis from NADP/NADPH-mediated redox control. Together, this work provides in vivo mechanistic insights into how oncogenic Kras promotes metabolic reprogramming in native tumors and illuminates potential metabolic targets that can be exploited for therapeutic benefit in PDAC. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular internalization of exosomes occurs through phagocytosis.

            Exosomes play important roles in many physiological and pathological processes. However, the exosome-cell interaction mode and the intracellular trafficking pathway of exosomes in their recipient cells remain unclear. Here, we report that exosomes derived from K562 or MT4 cells are internalized more efficiently by phagocytes than by non-phagocytic cells. Most exosomes were observed attached to the plasma membrane of non-phagocytic cells, while in phagocytic cells these exosomes were found to enter via phagocytosis. Specifically, they moved to phagosomes together with phagocytic polystyrene carboxylate-modified latex beads (biospheres) and were further sorted into phagolysosomes. Moreover, exosome internalization was dependent on the actin cytoskeleton and phosphatidylinositol 3-kinase, and could be inhibited by the knockdown of dynamin2 or overexpression of a dominant-negative form of dynamin2. Further, antibody pretreatment assays demonstrated that tim4 but not tim1 was involved in exosomes uptake. We also found that exosomes did not enter the internalization pathway involving caveolae, macropinocytosis and clathrin-coated vesicles. Our observation that the cellular uptake of exosomes occurs through phagocytosis has important implications for exosome-cell interactions and the exosome intracellular trafficking pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular characterization of the tumor microenvironment in breast cancer.

              Here we describe the comprehensive gene expression profiles of each cell type composing normal breast tissue and in situ and invasive breast carcinomas using serial analysis of gene expression. Based on these data, we determined that extensive gene expression changes occur in all cell types during cancer progression and that a significant fraction of altered genes encode secreted proteins and receptors. Despite the dramatic gene expression changes in all cell types, genetic alterations were detected only in cancer epithelial cells. The CXCL14 and CXCL12 chemokines overexpressed in tumor myoepithelial cells and myofibroblasts, respectively, bind to receptors on epithelial cells and enhance their proliferation, migration, and invasion. Thus, chemokines may play a role in breast tumorigenesis by acting as paracrine factors.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                27 February 2016
                2016
                : 5
                : e10250
                Affiliations
                [1 ]deptLaboratory for Systems Biology of Human Diseases , Rice University , Houston, United States
                [2 ]deptDepartment of Chemical and Biomolecular Engineering , Rice University , Houston, United States
                [3 ]deptDepartments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research , University of Texas MD Anderson Cancer Center , Houston, United States
                [4 ]deptDepartment of Systems Biology , University of Texas, MD Anderson , Houston, United States
                [5 ]Baylor College of Medicine , Houston, United States
                [6 ]deptDepartment of Pediatrics , University of Texas MD Anderson Cancer Center , Houston, United States
                [7 ]deptDepartment of Urology, School of Medicine , Stanford University , Stanford, United States
                [8 ]deptDepartment of Bioengineering , Rice University , Houston, United States
                [9]University of Pennsylvania , United States
                [10]University of Pennsylvania , United States
                Author notes
                Author information
                http://orcid.org/0000-0002-8999-2282
                Article
                10250
                10.7554/eLife.10250
                4841778
                26920219
                b9e78995-d41c-41ff-acec-2b23f6d45322
                © 2016, Zhao et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 21 July 2015
                : 26 February 2016
                Funding
                No external funding was received for this work.
                Categories
                Research Article
                Cell Biology
                Human Biology and Medicine
                Custom metadata
                2.5
                Exosomes from cancer-associated fibroblasts enhance the "Warburg effect" in tumors and contain de novo metabolites that can contribute to the entire compendia of central carbon metabolism within cancer cells.

                Life sciences
                cancer metabolism,tumor microenvironment,exosomes,metabolic flux analysis,reductive carboxylation,macropinocytosis,human

                Comments

                Comment on this article