7
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-density Lipoprotein and Low-density Lipoprotein Therapeutic Approaches in Acute Coronary Syndromes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Low-density lipoprotein cholesterol (LDL), and especially its oxidized form, renders the atherosclerotic plaque vulnerable to rupture in acute coronary syndromes (ACS). On the other hand, high-density lipoprotein (HDL) is considered an anti-atherogenic molecule. The more re-cent HDL-targeted drugs may prove to be superior to those used before. Indeed, delipidated HDL and HDL mimetics are efficient in increasing HDL levels, while the apoA-I upregulation with RVX-208 appears to offer a clinical benefit which is beyond the HDL related effects. HDL treatment however has not shown a significant improvement in the outcomes of patients with ACS so far, studies have therefore focused again on LDL. In addition to statins and ezetimibe, novel drugs such as PSCK9 in-hibitors and apolipoprotein B inhibitors appear to be both effective and safe for patients with hyper-lipidemia.

          Conclusion:

          Data suggest these could potentially improve the cardiovascular outcomes of patient with ACS. Yet, there is still research to be done, in order to confirm whether ACS patients would benefit from LDL- or HDL-targeted therapies or a combination of both.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Dysfunctional HDL and atherosclerotic cardiovascular disease.

          High-density lipoproteins (HDLs) protect against atherosclerosis by removing excess cholesterol from macrophages through the ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1) pathways involved in reverse cholesterol transport. Factors that impair the availability of functional apolipoproteins or the activities of ABCA1 and ABCG1 could, therefore, strongly influence atherogenesis. HDL also inhibits lipid oxidation, restores endothelial function, exerts anti-inflammatory and antiapoptotic actions, and exerts anti-inflammatory actions in animal models. Such properties could contribute considerably to the capacity of HDL to inhibit atherosclerosis. Systemic and vascular inflammation has been proposed to convert HDL to a dysfunctional form that has impaired antiatherogenic effects. A loss of anti-inflammatory and antioxidative proteins, perhaps in combination with a gain of proinflammatory proteins, might be another important component in rendering HDL dysfunctional. The proinflammatory enzyme myeloperoxidase induces both oxidative modification and nitrosylation of specific residues on plasma and arterial apolipoprotein A-I to render HDL dysfunctional, which results in impaired ABCA1 macrophage transport, the activation of inflammatory pathways, and an increased risk of coronary artery disease. Understanding the features of dysfunctional HDL or apolipoprotein A-I in clinical practice might lead to new diagnostic and therapeutic approaches to atherosclerosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction: the IDEAL study: a randomized controlled trial.

            Evidence suggests that more intensive lowering of low-density lipoprotein cholesterol (LDL-C) than is commonly applied clinically will provide further benefit in stable coronary artery disease. To compare the effects of 2 strategies of lipid lowering on the risk of cardiovascular disease among patients with a previous myocardial infarction (MI). The IDEAL study, a prospective, randomized, open-label, blinded end-point evaluation trial conducted at 190 ambulatory cardiology care and specialist practices in northern Europe between March 1999 and March 2005 with a median follow-up of 4.8 years, which enrolled 8888 patients aged 80 years or younger with a history of acute MI. Patients were randomly assigned to receive a high dose of atorvastatin (80 mg/d; n = 4439), or usual-dose simvastatin (20 mg/d; n = 4449). Occurrence of a major coronary event, defined as coronary death, confirmed nonfatal acute MI, or cardiac arrest with resuscitation. During treatment, mean LDL-C levels were 104 (SE, 0.3) mg/dL in the simvastatin group and 81 (SE, 0.3) mg/dL in the atorvastatin group. A major coronary event occurred in 463 simvastatin patients (10.4%) and in 411 atorvastatin patients (9.3%) (hazard ratio [HR], 0.89; 95% CI, 0.78-1.01; P = .07). Nonfatal acute MI occurred in 321 (7.2%) and 267 (6.0%) in the 2 groups (HR, 0.83; 95% CI, 0.71-0.98; P = .02), but no differences were seen in the 2 other components of the primary end point. Major cardiovascular events occurred in 608 and 533 in the 2 groups, respectively (HR, 0.87; 95% CI, 0.77-0.98; P = .02). Occurrence of any coronary event was reported in 1059 simvastatin and 898 atorvastatin patients (HR, 0.84; 95% CI, 0.76-0.91; P<.001). Noncardiovascular death occurred in 156 (3.5%) and 143 (3.2%) in the 2 groups (HR, 0.92; 95% CI, 0.73-1.15; P = .47). Death from any cause occurred in 374 (8.4%) in the simvastatin group and 366 (8.2%) in the atorvastatin group (HR, 0.98; 95% CI, 0.85-1.13; P = .81). Patients in the atorvastatin group had higher rates of drug discontinuation due to nonserious adverse events; transaminase elevation resulted in 43 (1.0%) vs 5 (0.1%) withdrawals (P<.001). Serious myopathy and rhabdomyolysis were rare in both groups. In this study of patients with previous MI, intensive lowering of LDL-C did not result in a significant reduction in the primary outcome of major coronary events, but did reduce the risk of other composite secondary end points and nonfatal acute MI. There were no differences in cardiovascular or all-cause mortality. Patients with MI may benefit from intensive lowering of LDL-C without an increase in noncardiovascular mortality or other serious adverse reactions.Trial Registration ClinicalTrials.gov Identifier: NCT00159835.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial.

              Limited data are available evaluating how the timing and intensity of statin therapy following an acute coronary syndrome (ACS) event affect clinical outcome. To compare early initiation of an intensive statin regimen with delayed initiation of a less intensive regimen in patients with ACS. International, randomized, double-blind trial of patients with ACS receiving 40 mg/d of simvastatin for 1 month followed by 80 mg/d thereafter (n = 2265) compared with ACS patients receiving placebo for 4 months followed by 20 mg/d of simvastatin (n = 2232), who were enrolled in phase Z of the A to Z trial between December 29, 1999, and January 6, 2003. The primary end point was a composite of cardiovascular death, nonfatal myocardial infarction, readmission for ACS, and stroke. Follow-up was for at least 6 months and up to 24 months. Among the patients in the placebo plus simvastatin group, the median low-density lipoprotein (LDL) cholesterol level achieved while taking placebo was 122 mg/dL (3.16 mmol/L) at 1 month and was 77 mg/dL (1.99 mmol/L) at 8 months while taking 20 mg/d of simvastatin. Among the patients in the simvastatin only group, the median LDL cholesterol level achieved at 1 month while taking 40 mg/d of simvastatin was 68 mg/dL (1.76 mmol/L) and was 63 mg/dL (1.63 mmol/L) at 8 months while taking 80 mg/d of simvastatin. A total of 343 patients (16.7%) in the placebo plus simvastatin group experienced the primary end point compared with 309 (14.4%) in the simvastatin only group (40 mg/80 mg) (hazard ratio [HR], 0.89; 95% confidence interval [CI] 0.76-1.04; P =.14). Cardiovascular death occurred in 109 (5.4%) and 83 (4.1%) patients in the 2 groups (HR, 0.75; 95% CI, 0.57-1.00; P =.05) but no differences were observed in other individual components of the primary end point. No difference was evident during the first 4 months between the groups for the primary end point (HR, 1.01; 95% CI, 0.83-1.25; P =.89), but from 4 months through the end of the study the primary end point was significantly reduced in the simvastatin only group (HR, 0.75; 95% CI, 0.60-0.95; P =.02). Myopathy (creatine kinase >10 times the upper limit of normal associated with muscle symptoms) occurred in 9 patients (0.4%) receiving simvastatin 80 mg/d, in no patients receiving lower doses of simvastatin, and in 1 patient receiving placebo (P =.02). The trial did not achieve the prespecified end point. However, among patients with ACS, the early initiation of an aggressive simvastatin regimen resulted in a favorable trend toward reduction of major cardiovascular events.
                Bookmark

                Author and article information

                Journal
                Curr Cardiol Rev
                Curr Cardiol Rev
                CCR
                Current Cardiology Reviews
                Bentham Science Publishers
                1573-403X
                1875-6557
                August 2017
                August 2017
                : 13
                : 3
                : 168-182
                Affiliations
                [1 ] St George’s University Hospital , London, , United Kingdom;
                [2 ]1 st Department of Cardiology, Hippokration Hospital, University of Athens , Athens, , Greece;
                [3 ]Barts Heart Centre, St Bartholomew’s Hospital , London, , United Kingdom;
                [4 ]Epsom and St Helier University Hospitals , London, , UK;
                [5 ]Department of Cardiovascular Imaging, King’s College London , UK
                Author notes
                [* ]Address correspondence to this author at the Barts Heart Centre, St Bartholomew’s Hospital, West Smithfield, EC1A 7BE, London, United Kingdom; Tel: (+44) 020 3765 8000; Fax: (+44) 020 7791 9670; E-mail: drnpapageorgiou@ 123456yahoo.com
                [#]

                equally contributed.

                Article
                CCR-13-168
                10.2174/1573403X13666170209145622
                5633711
                28190386
                b9f139c0-3bda-4370-87dd-0b604476e460
                © 2017 Bentham Science Publishers

                This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 16 September 2016
                : 26 January 2017
                : 03 February 2017
                Categories
                Article

                Cardiovascular Medicine
                high-density lipoprotein,low-density lipoprotein,acute coronary syndromes,outcomes,atherosclerosis,lipid-lowering drugs,statins,ezetimibe

                Comments

                Comment on this article