27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes.

      1 , ,
      Molecular and cellular biology
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peroxisome proliferator-activated receptor alpha (PPARalpha) plays a key role in the transcriptional control of genes encoding mitochondrial fatty acid beta-oxidation (FAO) enzymes. In this study we sought to determine whether the recently identified PPAR gamma coactivator 1 (PGC-1) is capable of coactivating PPARalpha in the transcriptional control of genes encoding FAO enzymes. Mammalian cell cotransfection experiments demonstrated that PGC-1 enhanced PPARalpha-mediated transcriptional activation of reporter plasmids containing PPARalpha target elements. PGC-1 also enhanced the transactivation activity of a PPARalpha-Gal4 DNA binding domain fusion protein. Retroviral vector-mediated expression studies performed in 3T3-L1 cells demonstrated that PPARalpha and PGC-1 cooperatively induced the expression of PPARalpha target genes and increased cellular palmitate oxidation rates. Glutathione S-transferase "pulldown" studies revealed that in contrast to the previously reported ligand-independent interaction with PPARgamma, PGC-1 binds PPARalpha in a ligand-influenced manner. Protein-protein interaction studies and mammalian cell hybrid experiments demonstrated that the PGC-1-PPARalpha interaction involves an LXXLL domain in PGC-1 and the PPARalpha AF2 region, consistent with the observed ligand influence. Last, the PGC-1 transactivation domain was mapped to within the NH(2)-terminal 120 amino acids of the PGC-1 molecule, a region distinct from the PPARalpha interacting domains. These results identify PGC-1 as a coactivator of PPARalpha in the transcriptional control of mitochondrial FAO capacity, define separable PPARalpha interaction and transactivation domains within the PGC-1 molecule, and demonstrate that certain features of the PPARalpha-PGC-1 interaction are distinct from that of PPARgamma-PGC-1.

          Related collections

          Author and article information

          Journal
          Mol Cell Biol
          Molecular and cellular biology
          American Society for Microbiology
          0270-7306
          0270-7306
          Mar 2000
          : 20
          : 5
          Affiliations
          [1 ] Center for Cardiovascular Research, Departments of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
          Article
          10.1128/MCB.20.5.1868-1876.2000
          85369
          10669761
          b9f2cc2d-cc74-4678-9465-a7ea5b888252
          History

          Comments

          Comment on this article