1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nanocellulose based biodegradable polymers

      ,

      European Polymer Journal

      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 152

          • Record: found
          • Abstract: found
          • Article: not found

          Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field.

          There are numerous examples where animals or plants synthesize extracellular high-performance skeletal biocomposites consisting of a matrix reinforced by fibrous biopolymers. Cellulose, the world's most abundant natural, renewable, biodegradable polymer, is a classical example of these reinforcing elements, which occur as whisker-like microfibrils that are biosynthesized and deposited in a continuous fashion. In many cases, this mode of biogenesis leads to crystalline microfibrils that are almost defect-free, with the consequence of axial physical properties approaching those of perfect crystals. This quite "primitive" polymer can be used to create high performance nanocomposites presenting outstanding properties. This reinforcing capability results from the intrinsic chemical nature of cellulose and from its hierarchical structure. Aqueous suspensions of cellulose crystallites can be prepared by acid hydrolysis of cellulose. The object of this treatment is to dissolve away regions of low lateral order so that the water-insoluble, highly crystalline residue may be converted into a stable suspension by subsequent vigorous mechanical shearing action. During the past decade, many works have been devoted to mimic biocomposites by blending cellulose whiskers from different sources with polymer matrixes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Microfibrillated cellulose and new nanocomposite materials: a review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose.

              The shape and size distribution of crystalline nanoparticles resulting from the sulfuric acid hydrolysis of cellulose from cotton, Avicel, and tunicate were investigated using transmission electron microscopy (TEM) and atomic force microscopy (AFM) as well as small- and wide-angle X-ray scattering (SAXS and WAXS). Images of negatively stained and cryo-TEM specimens showed that the majority of cellulose particles were flat objects constituted by elementary crystallites whose lateral adhesion was resistant against hydrolysis and sonication treatments. Moreover, tunicin whiskers were described as twisted ribbons with an estimated pitch of 2.4-3.2 microm. Length and width distributions of all samples were generally well described by log-normal functions, with the exception of tunicin, which had less lateral aggregation. AFM observation confirmed that the thickness of the nanocrystals was almost constant for a given origin and corresponded to the crystallite size measured from peak broadening in WAXS spectra. Experimental SAXS profiles were numerically simulated, combining the dimensions and size distribution functions determined by the various techniques.
                Bookmark

                Author and article information

                Journal
                European Polymer Journal
                European Polymer Journal
                Elsevier BV
                00143057
                June 2020
                June 2020
                : 133
                : 109758
                Article
                10.1016/j.eurpolymj.2020.109758
                © 2020

                Comments

                Comment on this article