16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nanocellulose based biodegradable polymers

      ,
      European Polymer Journal
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references152

          • Record: found
          • Abstract: not found
          • Article: not found

          Microfibrillated cellulose and new nanocomposite materials: a review

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field.

            There are numerous examples where animals or plants synthesize extracellular high-performance skeletal biocomposites consisting of a matrix reinforced by fibrous biopolymers. Cellulose, the world's most abundant natural, renewable, biodegradable polymer, is a classical example of these reinforcing elements, which occur as whisker-like microfibrils that are biosynthesized and deposited in a continuous fashion. In many cases, this mode of biogenesis leads to crystalline microfibrils that are almost defect-free, with the consequence of axial physical properties approaching those of perfect crystals. This quite "primitive" polymer can be used to create high performance nanocomposites presenting outstanding properties. This reinforcing capability results from the intrinsic chemical nature of cellulose and from its hierarchical structure. Aqueous suspensions of cellulose crystallites can be prepared by acid hydrolysis of cellulose. The object of this treatment is to dissolve away regions of low lateral order so that the water-insoluble, highly crystalline residue may be converted into a stable suspension by subsequent vigorous mechanical shearing action. During the past decade, many works have been devoted to mimic biocomposites by blending cellulose whiskers from different sources with polymer matrixes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls.

              Cellulose nanofibers were extracted from the agricultural residues, wheat straw and soy hulls, by a chemi-mechanical technique to examine their potential for use as reinforcement fibers in biocomposite applications. The structure of the cellulose nanofibers was investigated by transmission electron microscopy. The wheat straw nanofibers were determined to have diameters in the range of 10-80 nm and lengths of a few thousand nanometers. By comparison, the soy hull nanofibers had diameter 20-120 nm and shorter lengths than the wheat straw nanofibers. Chemical characterization of the wheat straw nanofibers confirmed that the cellulose content was increased from 43% to 84% by an applied alkali and acid treatment. FT-IR spectroscopic analysis of both fibers demonstrated that this chemical treatment also led to partial removal of hemicelluloses and lignin from the structure of the fibers. PXRD results revealed that this resulted in improved crystallinity of the fibers. After mechanical treatments of cryocrushing, disintegration and defibrillation, the thermal properties of the nanofibers were studied by the TGA technique and found to increase dramatically. The degradation temperature of both nanofiber types reached beyond 290 degrees C. This value is reasonably promising for the use of these nanofibers in reinforced-polymer manufacturing.
                Bookmark

                Author and article information

                Journal
                European Polymer Journal
                European Polymer Journal
                Elsevier BV
                00143057
                June 2020
                June 2020
                : 133
                : 109758
                Article
                10.1016/j.eurpolymj.2020.109758
                b9fd6d73-0191-4455-bd05-cdcb0315a999
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article