1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Targeting proprotein convertases in furin-rich lung cancer cells results in decreased in vitro and in vivo growth : INHIBITION OF LUNG CANCER CELL GROWTH BY FURIN INHIBITOR

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Proprotein convertases (PCs) are serine proteases with an active role in the post-translational processing of numerous inactive proteins to active proteins including many substrates of paramount importance in cancer development and progression. Furin (PCSKC3), a well-studied member of this family, is overexpressed in numerous human and experimental malignancies. In the present communication we treated two furin-overexpressing non-small cell carcinoma (NSCLC) cell lines (Calu-6 and HOP-62) with the PC inhibitor CMK (Decanoyl-Arg-Val-Lys-Argchloromethylketone). This resulted in a diminished IGF-1R processing and a simultaneous decrease in cell proliferation of two NSCLC lines. Similarly, growth and proliferation of subcutaneous xenografts of both cell lines, were partially inhibited by an <i>in vivo</i> treatment with the same drug. These observations point to a potential role of PC inhibitors in cancer therapy. </p>

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Transforming growth factor-beta regulation of immune responses.

          Transforming growth factor-beta (TGF-beta) is a potent regulatory cytokine with diverse effects on hemopoietic cells. The pivotal function of TGF-beta in the immune system is to maintain tolerance via the regulation of lymphocyte proliferation, differentiation, and survival. In addition, TGF-beta controls the initiation and resolution of inflammatory responses through the regulation of chemotaxis, activation, and survival of lymphocytes, natural killer cells, dendritic cells, macrophages, mast cells, and granulocytes. The regulatory activity of TGF-beta is modulated by the cell differentiation state and by the presence of inflammatory cytokines and costimulatory molecules. Collectively, TGF-beta inhibits the development of immunopathology to self or nonharmful antigens without compromising immune responses to pathogens. This review highlights the findings that have advanced our understanding of TGF-beta in the immune system and in disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Furin-dependent intracellular activation of the human stromelysin-3 zymogen.

            Human stromelysin-3, a new member of the matrix metalloproteinase family, is expressed in tissues undergoing the active remodelling associated with embryonic development, wound healing and tumour invasion. But like all other members of the matrix metalloproteinase gene family, stromelysin-3 is synthesized as an inactive precursor that must be processed to its mature form in order to express enzymic activity. Here we identify stromelysin-3 as the first matrix metalloproteinase to be discovered that can be processed directly to its enzymically active form by an obligate intracellular proteolytic event that occurs within the constitutive secretory pathway. Intracellular activation is regulated by an unusual 10-amino-acid insert sandwiched between the pro- and catalytic-domains of stromelysin-3, which is encrypted with an Arg-X-Arg-X-Lys-Arg recognition motif for the Golgi-associated proteinase, furin, a mammalian homologue of the yeast Kex2 pheromone convertase. A furin-stromelysin-3 processing axis not only differentiates the regulation of this enzyme from all previously characterized matrix metalloproteinases, but also identifies pro-protein convertases as potential targets for therapeutic intervention in matrix-destructive disease states.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Phase I trial of "bi-shRNAi(furin)/GMCSF DNA/autologous tumor cell" vaccine (FANG) in advanced cancer.

              We performed a phase I trial of FANG vaccine, an autologous tumor-based product incorporating a plasmid encoding granulocyte-macrophage colony-stimulating factor (GMCSF) and a novel bifunctional short hairpin RNAi (bi-shRNAi) targeting furin convertase, thereby downregulating endogenous immunosuppressive transforming growth factors (TGF) β1 and β2. Patients with advanced cancer received up to 12 monthly intradermal injections of FANG vaccine (1 × 10(7) or 2.5 × 10(7) cells/ml injection). GMCSF, TGFβ1, TGFβ2, and furin proteins were quantified by enzyme-linked immunosorbent assay (ELISA). Safety and response were monitored. Vaccine manufacturing was successful in 42 of 46 patients of whom 27 received ≥1 vaccine. There were no treatment-related serious adverse events. Most common grade 1, 2 adverse events included local induration (n = 14) and local erythema (n = 11) at injection site. Post-transfection mean product expression GMCSF increased from 7.3 to 1,108 pg/10(6) cells/ml. Mean TGFβ1 and β2 effective target knockdown was 93.5 and 92.5% from baseline, respectively. Positive enzyme-linked immunospot (ELISPOT) response at month 4 was demonstrated in 9 of 18 patients serially assessed and correlated with survival duration from time of treatment (P = 0.025). Neither dose-adverse event nor dose-response relationship was noted. In conclusion, FANG vaccine was safe and elicited an immune response correlating with prolonged survival. Phase II assessment is justified.
                Bookmark

                Author and article information

                Journal
                Molecular Carcinogenesis
                Mol. Carcinog.
                Wiley
                08991987
                March 2017
                March 2017
                September 22 2016
                : 56
                : 3
                : 1182-1188
                Affiliations
                [1 ]Department of Pathology and Histopathology Facility; Fox Chase Cancer Center; Philadelphia Pennsylvania
                [2 ]Cancer Biology Program; Fox Chase Cancer Center; Philadelphia Pennsylvania
                Article
                10.1002/mc.22550
                6166887
                27584082
                ba00c7a6-0cac-4c15-bf20-a93b1877673d
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1

                http://onlinelibrary.wiley.com/termsAndConditions

                History

                Comments

                Comment on this article