7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ultrafast optogenetic control

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Channelrhodopsins such as channelrhodopsin-2 (ChR2) can drive spiking with millisecond precision in a wide variety of cells, tissues and animal species. However, several properties of this protein have limited the precision of optogenetic control. First, when ChR2 is expressed at high levels, extra spikes (for example, doublets) can occur in response to a single light pulse, with potential implications as doublets may be important for neural coding. Second, many cells cannot follow ChR2-driven spiking above the gamma (approximately 40 Hz) range in sustained trains, preventing temporally stationary optogenetic access to a broad and important neural signaling band. Finally, rapid optically driven spike trains can result in plateau potentials of 10 mV or more, causing incidental upstates with information-processing implications. We designed and validated an engineered opsin gene (ChETA) that addresses all of these limitations (profoundly reducing extra spikes, eliminating plateau potentials and allowing temporally stationary, sustained spike trains up to at least 200 Hz).

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: not found

          Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning.

          Natural rewards and drugs of abuse can alter dopamine signaling, and ventral tegmental area (VTA) dopaminergic neurons are known to fire action potentials tonically or phasically under different behavioral conditions. However, without technology to control specific neurons with appropriate temporal precision in freely behaving mammals, the causal role of these action potential patterns in driving behavioral changes has been unclear. We used optogenetic tools to selectively stimulate VTA dopaminergic neuron action potential firing in freely behaving mammals. We found that phasic activation of these neurons was sufficient to drive behavioral conditioning and elicited dopamine transients with magnitudes not achieved by longer, lower-frequency spiking. These results demonstrate that phasic dopaminergic activity is sufficient to mediate mammalian behavioral conditioning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bursts as a unit of neural information: making unreliable synapses reliable.

             J Lisman (1996)
            Several lines of evidence indicate that brief (< 25 ms) bursts of high-frequency firing have special importance in brain function. Recent work shows that many central synapses are surprisingly unreliable at signaling the arrival of single presynaptic action potentials to the postsynaptic neuron. However, bursts are reliably signaled because transmitter release is facilitated. Thus, these synapses can be viewed as filters that transmit bursts, but filter out single spikes. Bursts appear to have a special role in synaptic plasticity and information processing. In the hippocampus, a single burst can produce long-term synaptic modifications. In brain structures whose computational role is known, action potentials that arrive in bursts provide more-precise information than action potentials that arrive singly. These results, and the requirement for multiple inputs to fire a cell suggest that the best stimulus for exciting a cell (that is, a neural code) is coincident bursts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Millisecond-timescale, genetically targeted optical control of neural activity.

              Temporally precise, noninvasive control of activity in well-defined neuronal populations is a long-sought goal of systems neuroscience. We adapted for this purpose the naturally occurring algal protein Channelrhodopsin-2, a rapidly gated light-sensitive cation channel, by using lentiviral gene delivery in combination with high-speed optical switching to photostimulate mammalian neurons. We demonstrate reliable, millisecond-timescale control of neuronal spiking, as well as control of excitatory and inhibitory synaptic transmission. This technology allows the use of light to alter neural processing at the level of single spikes and synaptic events, yielding a widely applicable tool for neuroscientists and biomedical engineers.
                Bookmark

                Author and article information

                Journal
                Nature Neuroscience
                Nat Neurosci
                Springer Science and Business Media LLC
                1097-6256
                1546-1726
                March 2010
                January 17 2010
                March 2010
                : 13
                : 3
                : 387-392
                Article
                10.1038/nn.2495
                20081849
                © 2010

                Comments

                Comment on this article