+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Overexpression of CCL-21/Secondary Lymphoid Tissue Chemokine in Human Dendritic Cells Augments Chemotactic Activities for Lymphocytes and Antigen Presenting Cells


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Ex vivo generated dendritic cells (DC) genetically modified to express secondary lymphoid tissue chemokine (CCL-21/SLC) have been shown to stimulate potent antitumor responses in murine models. When injected intratumorally, CCL-21 colocalizes DC and lymphocyte effector cells at the tumor site. This may improve tumor antigen presentation and T cell activation by utilizing the tumor as an in vivo source of antigen for DC. In order to develop DC-based cancer therapies for intratumoral injection that could promote tumor antigen uptake and presentation in situ, we constructed and characterized an adenoviral vector that expresses human CCL-21 (AdCCL-21).


          Human monocyte derived DC were cultured in GM-CSF and IL-4 for 6 days. Following AdCCL-21 transduction, CCL-21 protein production was assessed by ELISA on day 8. DC transduced with AdCCL-21 at multiplicities of infection (MOIs) of 50:1 or 100:1 produced up to 210 ± 9 ng/ml and 278 ± 6.5 ng/ml /10 6 cells/48 hours, respectively. Following transduction, an immature DC phenotype was maintained and an upregulation of the costimulatory molecule, CD86 was noted. In addition, supernatant from AdCCL-21-DC caused significant chemotaxis of peripheral blood lymphocytes and mature DC.


          These studies demonstrate that AdCCL-21-DC generate functional levels of CCL-21 without adversely altering DC phenotype. These findings strengthen the rationale for further investigation of AdCCL-21-DC as a DC-based therapy in cancer treatment.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells.

          Melanoma is the main cause of death in patients with skin cancer. Cytotoxic T lymphocytes (CTLs) attack melanoma cells in an HLA-restricted and tumor antigen-specific manner. Several melanoma-associated tumor antigens have been identified. These antigens are suitable candidates for a vaccination therapy of melanoma. Dendritic cells (DCs) are antigen-presenting cells (APCs) specialized for the induction of a primary T-cell response. Mouse studies have demonstrated the potent capacity of DCs to induce antitumor immunity. In the present clinical pilot study, DCs were generated in the presence of granulocyte/macrophage-colony stimulating factor (GM-CSF) and interleukin 4 (IL-4) and were pulsed with tumor lysate or a cocktail of peptides known to be recognized by CTLs, depending on the patient's HLA haplotype. Keyhole limpet hemocyanin (KLH) was added as a CD4 helper antigen and immunological tracer molecule. Sixteen patients with advanced melanoma were immunized on an outpatient basis. Vaccination was well tolerated. No physical sign of autoimmunity was detected in any of the patients. DC vaccination induced delayed-type hypersensitivity (DTH) reactivity toward KLH in all patients, as well as a positive DTH reaction to peptide-pulsed DCs in 11 patients. Recruitment of peptide-specific CTLs to the DTH challenge site was also demonstrated. Therefore, antigen-specific immunity was induced during DC vaccination. Objective responses were evident in 5 out of 16 evaluated patients (two complete responses, three partial responses) with regression of metastases in various organs (skin, soft tissue, lung, pancreas) and one additional minor response. These data indicate that vaccination with autologous DCs generated from peripheral blood is a safe and promising approach in the treatment of metastatic melanoma. Further studies are necessary to demonstrate clinical effectiveness and impact on the survival of melanoma patients.
            • Record: found
            • Abstract: found
            • Article: not found

            Mice Lacking Expression of Secondary Lymphoid Organ Chemokine Have Defects in Lymphocyte Homing and Dendritic Cell Localization

            Secondary lymphoid organ chemokine (SLC) is expressed in high endothelial venules and in T cell zones of spleen and lymph nodes (LNs) and strongly attracts naive T cells. In mice homozygous for the paucity of lymph node T cell (plt) mutation, naive T cells fail to home to LNs or the lymphoid regions of spleen. Here we demonstrate that expression of SLC is undetectable in plt mice. In addition to the defect in T cell homing, we demonstrate that dendritic cells (DCs) fail to accumulate in spleen and LN T cell zones of plt mice. DC migration to LNs after contact sensitization is also substantially reduced. The physiologic significance of these abnormalities in plt mice is indicated by a markedly increased sensitivity to infection with murine hepatitis virus. The plt mutation maps to the SLC locus; however, the sequence of SLC introns and exons in plt mice is normal. These findings suggest that the abnormalities in plt mice are due to a genetic defect in the expression of SLC and that SLC mediates the entry of naive T cells and antigen-stimulated DCs into the T cell zones of secondary lymphoid organs.
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation.

              Dendritic cells (DC) migrate into inflamed peripheral tissues where they capture antigens and, following maturation, to lymph nodes where they stimulate T cells. To gain insight into this process we compared chemokine receptor expression in immature and mature DC. Immature DC expressed CCR1, CCR2, CCR5 and CXCR1 and responded to their respective ligands, which are chemokines produced at inflammatory sites. Following stimulation with LPS or TNF-alpha maturing DC expressed high levels of CCR7 mRNA and acquired responsiveness to the CCR7 ligand EBI1 ligand chemokine (ELC), a chemokine produced in lymphoid organs. Maturation also resulted in up-regulation of CXCR4 and down-regulation of CXCR1 mRNA, while CCR1 and CCR5 mRNA were only marginally affected for up to 40 h. However, CCR1 and CCR5 were lost from the cell surface within 3 h, due to receptor down-regulation mediated by chemokines produced by maturing DC. A complete down-regulation of CCR1 and CCR5 mRNA was observed only after stimulation with CD40 ligand of DC induced to mature by LPS treatment. These different patterns of chemokine receptors are consistent with "inflammatory" and "primary response" phases of DC function.

                Author and article information

                Mol Cancer
                Molecular Cancer
                BioMed Central (London )
                2 November 2003
                : 2
                : 35
                [1 ]Department of Medicine, UCLA Lung Cancer Research Program, 37-131 CHS, David Geffen School of Medicine at UCLA, 10833 LeConte Avenue, Los Angeles, CA 90095-1690, USA
                [2 ]Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
                [3 ]Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
                Copyright © 2003 Riedl et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.

                Oncology & Radiotherapy


                Comment on this article