+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Preconditioning with Sodium Arsenite Inhibits Apoptotic Cell Death in Rat Kidney with Ischemia/Reperfusion or Cyclosporine-Induced Injuries

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          This study was performed to evaluate the effect of heat-shock protein (HSP)70 induction with sodium arsenite (SA) on ischemia/reperfusion (I/R) or cyclosporin A (CsA)-induced injuries in rat kidney. Rats were classified into five groups (sham, I/R, SA+I/R, I/R+CsA and SA+I/R+CsA groups) according to both the status of SA pretreatment and treatment with CsA. SA (6 mg/kg, i.v.) pretreatment was accomplished 12 h before I/R injury, and CsA (20 mg/kg, s.c.) was given subsequent to I/R injury. The effect of SA pretreatment on I/R injury was evaluated using measurements of renal function, the histopathology score, and assays for apoptosis (DNA fragmentation analysis, TUNEL staining, mRNA expressions of the pro-apoptotic genes and caspase activities). In addition, mitochondrial morphology was examined by electron microscopy. Induction of HSP70 with SA improved both renal function and the histopathology score as compared to the group without HSP70 induction. The assays for apoptosis revealed that SA pretreatment decreased the DNA laddering pattern, TUNEL-positive cells, mRNAs expression of pro-apoptotic genes and caspase activities as compared with the group without SA pretreatment. In addition, the mitochondrial morphology was well preserved in the groups with SA pretreatment. In conclusion, SA pretreatment prevents subsequent I/R or CsA-induced injuries in the rat kidney, and this renoprotective effect appears to be mediated by induction of HSP70.

          Related collections

          Most cited references 5

          • Record: found
          • Abstract: found
          • Article: not found

          Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis.

          The protease responsible for the cleavage of poly(ADP-ribose) polymerase and necessary for apoptosis has been purified and characterized. This enzyme, named apopain, is composed of two subunits of relative molecular mass (M(r)) 17K and 12K that are derived from a common proenzyme identified as CPP32. This proenzyme is related to interleukin-1 beta-converting enzyme (ICE) and CED-3, the product of a gene required for programmed cell death in Caenorhabditis elegans. A potent peptide aldehyde inhibitor has been developed and shown to prevent apoptotic events in vitro, suggesting that apopain/CPP32 is important for the initiation of apoptotic cell death.
            • Record: found
            • Abstract: not found
            • Article: not found

            Mechanisms and functions of cell death.

              • Record: found
              • Abstract: found
              • Article: not found

              Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases.

              The major heat shock protein, Hsp70, is an effective inhibitor of apoptosis. To study its mechanism of action, we created tumor cell lines with altered Hsp70 levels. The expression levels of Hsp70 in the cells obtained correlated well with their survival following treatments with tumor necrosis factor, staurosporine and doxorubicin. Surprisingly, the surviving Hsp70-expressing cells responded to the apoptotic stimuli by activation of stress-activated protein kinases, generation of free radicals, early disruption of mitochondrial transmembrane potential, release of cytochrome c from mitochondria and activation of caspase-3-like proteases in a manner essentially similar to that of the dying cells with low Hsp70 levels. However, Hsp70 inhibited late caspase-dependent events such as activation of cytosolic phospholipase A2 and changes in nuclear morphology. Furthermore, Hsp70 conferred significant protection against cell death induced by enforced expression of caspase-3. Thus, Hsp70 rescues cells from apoptosis later in the death signaling pathway than any known anti-apoptotic protein, making it a tempting target for therapeutic interventions.

                Author and article information

                Nephron Exp Nephrol
                Cardiorenal Medicine
                S. Karger AG
                27 June 2001
                : 9
                : 4
                : 284-294
                Departments of Internal Medicine and Anatomy, The College of Medicine, The Catholic University of Korea, Seoul, Korea
                52623 Exp Nephrol 2001;9:284–294
                © 2001 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 9, Tables: 1, References: 41, Pages: 11
                Self URI (application/pdf):
                Original Paper


                Comment on this article