21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanostructured catalysts for electrochemical water splitting: current state and prospects

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The fundamentals of water electrolysis, current popular electrocatalysts developed for cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER) in liquid electrolyte water electrolysis are reviewed and discussed.

          Abstract

          Hydrogen is an ideal candidate for the replacement of fossil fuels in the future due to zero emission of carbonaceous species during its utilization. Water electrolysis is a dependable link of primary renewable energy and stable hydrogen energy. In this work, the fundamentals of water electrolysis, current popular electrocatalysts developed for cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER) in liquid electrolyte water electrolysis are reviewed. The main HER catalysts include noble metals, non-noble metals and composites, noble metal-free alloys, metal carbides, chalcogenides, phosphides and metal-free materials while the OER catalysts are focused on efficient Co-based, Ni-based materials and layered double hydroxide (LDH) materials. The strategies to improve catalytic activity, long-term durability and endurance to electrochemical erosion are introduced. The main challenges and future prospects for the further development of electrodes for water electrolysis are discussed. It is expected to give guidance for the development of novel low-cost nanostructured electrocatalysts for electrochemical water splitting.

          Related collections

          Most cited references189

          • Record: found
          • Abstract: found
          • Article: not found

          Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation.

          Fe plays a critical, but not yet understood, role in enhancing the activity of the Ni-based oxygen evolution reaction (OER) electrocatalysts. We report electrochemical, in situ electrical, photoelectron spectroscopy, and X-ray diffraction measurements on Ni(1-x)Fe(x)(OH)2/Ni(1-x)Fe(x)OOH thin films to investigate the changes in electronic properties, OER activity, and structure as a result of Fe inclusion. We developed a simple method for purification of KOH electrolyte that uses precipitated bulk Ni(OH)2 to absorb Fe impurities. Cyclic voltammetry on rigorously Fe-free Ni(OH)2/NiOOH reveals new Ni redox features and no significant OER current until >400 mV overpotential, different from previous reports which were likely affected by Fe impurities. We show through controlled crystallization that β-NiOOH is less active for OER than the disordered γ-NiOOH starting material and that previous reports of increased activity for β-NiOOH are due to incorporation of Fe-impurities during the crystallization process. Through-film in situ conductivity measurements show a >30-fold increase in film conductivity with Fe addition, but this change in conductivity is not sufficient to explain the observed changes in activity. Measurements of activity as a function of film thickness on Au and glassy carbon substrates are consistent with the hypothesis that Fe exerts a partial-charge-transfer activation effect on Ni, similar to that observed for noble-metal electrode surfaces. These results have significant implications for the design and study of Ni(1-x)Fe(x)OOH OER electrocatalysts, which are the fastest measured OER catalysts under basic conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis.

            Active, stable and cost-effective electrocatalysts are a key to water splitting for hydrogen production through electrolysis or photoelectrochemistry. Here we report nanoscale nickel oxide/nickel heterostructures formed on carbon nanotube sidewalls as highly effective electrocatalysts for hydrogen evolution reaction with activity similar to platinum. Partially reduced nickel interfaced with nickel oxide results from thermal decomposition of nickel hydroxide precursors bonded to carbon nanotube sidewalls. The metal ion-carbon nanotube interactions impede complete reduction and Ostwald ripening of nickel species into the less hydrogen evolution reaction active pure nickel phase. A water electrolyzer that achieves ~20 mA cm(-2) at a voltage of 1.5 V, and which may be operated by a single-cell alkaline battery, is fabricated using cheap, non-precious metal-based electrocatalysts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.

              Water oxidation is a critical step in water splitting to make hydrogen fuel. We report the solution synthesis, structural/compositional characterization, and oxygen evolution reaction (OER) electrocatalytic properties of ~2-3 nm thick films of NiO(x), CoO(x), Ni(y)Co(1-y)O(x), Ni(0.9)Fe(0.1)O(x), IrO(x), MnO(x), and FeO(x). The thin-film geometry enables the use of quartz crystal microgravimetry, voltammetry, and steady-state Tafel measurements to study the electrocatalytic activity and electrochemical properties of the oxides. Ni(0.9)Fe(0.1)O(x) was found to be the most active water oxidation catalyst in basic media, passing 10 mA cm(-2) at an overpotential of 336 mV with a Tafel slope of 30 mV dec(-1) with oxygen evolution reaction (OER) activity roughly an order of magnitude higher than IrO(x) control films and similar to the best known OER catalysts in basic media. The high activity is attributed to the in situ formation of layered Ni(0.9)Fe(0.1)OOH oxyhydroxide species with nearly every Ni atom electrochemically active. In contrast to previous reports that showed synergy between Co and Ni oxides for OER catalysis, Ni(y)Co(1-y)O(x) thin films showed decreasing activity relative to the pure NiO(x) films with increasing Co content. This finding is explained by the suppressed in situ formation of the active layered oxyhydroxide with increasing Co. The high OER activity and simple synthesis make these Ni-based catalyst thin films useful for incorporating with semiconductor photoelectrodes for direct solar-driven water splitting or in high-surface-area electrodes for water electrolysis.
                Bookmark

                Author and article information

                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                2016
                2016
                : 4
                : 31
                : 11973-12000
                Affiliations
                [1 ]Graduate School of Science and Technology
                [2 ]Hirosaki University
                [3 ]Hirosaki 036-8560
                [4 ]Japan
                [5 ]Department of Chemical Engineering
                [6 ]Taiyuan University of Technology
                [7 ]Taiyuan 030024
                [8 ]China
                [9 ]North Japan Research Institute for Sustainable Energy (NJRISE)
                Article
                10.1039/C6TA02334G
                ba29abd1-8938-49a6-81ba-58880c476fd0
                © 2016
                History

                Comments

                Comment on this article