12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxalomalate reduces expression and secretion of vascular endothelial growth factor in the retinal pigment epithelium and inhibits angiogenesis: Implications for age-related macular degeneration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clinical and experimental observations indicate a critical role for vascular endothelial growth factor (VEGF), secreted by the retinal pigment epithelium (RPE), in pathological angiogenesis and the development of choroidal neovascularization (CNV) in age-related macular degeneration (AMD). RPE-mediated VEGF expression, leading to angiogenesis, is a major signaling mechanism underlying ocular neovascular disease. Inhibiting this signaling pathway with a therapeutic molecule is a promising anti-angiogenic strategy to treat this disease with potentially fewer side effects. Oxalomalate (OMA) is a competitive inhibitor of NADP +-dependent isocitrate dehydrogenase (IDH), which plays an important role in cellular signaling pathways regulated by reactive oxygen species (ROS). Here, we have investigated the inhibitory effect of OMA on the expression of VEGF, and the associated underlying mechanism of action, using in vitro and in vivo RPE cell models of AMD. We found that OMA reduced the expression and secretion of VEGF in RPE cells, and consequently inhibited CNV formation. This function of OMA was linked to its capacity to activate the pVHL-mediated HIF-1α degradation in these cells, partly via a ROS-dependent ATM signaling axis, through inhibition of IDH enzymes. These findings reveal a novel role for OMA in inhibiting RPE-derived VEGF expression and angiogenesis, and suggest unique therapeutic strategies for treating pathological angiogenesis and AMD development.

          Graphical abstract

          Highlights

          • Oxalomalate reduces VEGF expression in RPE cells by promoting HIF-1α degradation.

          • Oxalomalate activates pVHL-mediated HIF-1α degradation by regulation of ATM-Chk2-E2F1 axis.

          • Inhibition of IDH enzymes by oxalomalate activates ROS-mediated ATM signaling axis.

          • Oxalomalate inhibits CNV-related angiogenesis in in vivo mouse model of AMD.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          ATM activation by oxidative stress.

          The ataxia-telangiectasia mutated (ATM) protein kinase is activated by DNA double-strand breaks (DSBs) through the Mre11-Rad50-Nbs1 (MRN) DNA repair complex and orchestrates signaling cascades that initiate the DNA damage response. Cells lacking ATM are also hypersensitive to insults other than DSBs, particularly oxidative stress. We show that oxidation of ATM directly induces ATM activation in the absence of DNA DSBs and the MRN complex. The oxidized form of ATM is a disulfide-cross-linked dimer, and mutation of a critical cysteine residue involved in disulfide bond formation specifically blocked activation through the oxidation pathway. Identification of this pathway explains observations of ATM activation under conditions of oxidative stress and shows that ATM is an important sensor of reactive oxygen species in human cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions.

            Hypoxia-inducible factor (HIF-1) is an oxygen-dependent transcriptional activator, which plays crucial roles in the angiogenesis of tumors and mammalian development. HIF-1 consists of a constitutively expressed HIF-1beta subunit and one of three subunits (HIF-1alpha, HIF-2alpha or HIF-3alpha). The stability and activity of HIF-1alpha are regulated by various post-translational modifications, hydroxylation, acetylation, and phosphorylation. Therefore, HIF-1alpha interacts with several protein factors including PHD, pVHL, ARD-1, and p300/CBP. Under normoxia, the HIF-1alpha subunit is rapidly degraded via the von Hippel-Lindau tumor suppressor gene product (pVHL)- mediated ubiquitin-proteasome pathway. The association of pVHL and HIF-1alpha under normoxic conditions is triggered by the hydroxylation of prolines and the acetylation of lysine within a polypeptide segment known as the oxygen-dependent degradation (ODD) domain. On the contrary, in the hypoxia condition, HIF-1alpha subunit becomes stable and interacts with coactivators such as p300/CBP to modulate its transcriptional activity. Eventually, HIF-1 acts as a master regulator of numerous hypoxia-inducible genes under hypoxic conditions. The target genes of HIF-1 are especially related to angiogenesis, cell proliferation/survival, and glucose/iron metabolism. Moreover, it was reported that the activation of HIF-1alpha is closely associated with a variety of tumors and oncogenic pathways. Hence, the blocking of HIF-1a itself or HIF-1alpha interacting proteins inhibit tumor growth. Based on these findings, HIF-1 can be a prime target for anticancer therapies. This review summarizes the molecular mechanism of HIF-1a stability, the biological functions of HIF-1 and its potential applications of cancer therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis.

              Apoptosis signal-regulating kinase (ASK) 1 is activated in response to various cytotoxic stresses including TNF, Fas and reactive oxygen species (ROS) such as H(2)O(2), and activates c-Jun NH(2)-terminal kinase (JNK) and p38. However, the roles of JNK and p38 signaling pathways during apoptosis have been controversial. Here we show that by deleting ASK1 in mice, TNF- and H(2)O(2)-induced sustained activations of JNK and p38 are lost in ASK1(-/-) embryonic fibroblasts, and that ASK1(-/-) cells are resistant to TNF- and H(2)O(2)-induced apoptosis. TNF- but not Fas-induced apoptosis requires ROS-dependent activation of ASK1-JNK/p38 pathways. Thus, ASK1 is selectively required for TNF- and oxidative stress-induced sustained activations of JNK/p38 and apoptosis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Redox Biol
                Redox Biol
                Redox Biology
                Elsevier
                2213-2317
                24 October 2016
                December 2016
                24 October 2016
                : 10
                : 211-220
                Affiliations
                [a ]School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
                [b ]Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
                [c ]Institutes of Natural Sciences, Korea University, Sejong, Republic of Korea
                Author notes
                [* ]Corresponding author at: Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea. jinhyuplee@ 123456korea.ac.kr
                [** ]Corresponding author. parkjw@ 123456knu.ac.kr
                Article
                S2213-2317(16)30108-2
                10.1016/j.redox.2016.10.008
                5094379
                27810736
                ba31df78-df70-42c8-a686-04447ce4afc6
                © 2016 Published by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 12 August 2016
                : 20 October 2016
                : 21 October 2016
                Categories
                Research Paper

                vegf,retinal pigment epithelium,oxalomalate,reactive oxygen species

                Comments

                Comment on this article