63
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanotechnology to rescue bacterial bidirectional extracellular electron transfer in bioelectrochemical systems

      ,
      RSC Advances
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advanced nanostructured electrode materials largely improve the bacterial bidirectional extracellular electron transfer in bioelectrochemical systems.

          An electrically active bacterium transports its metabolically generated electrons to insoluble substrates such as electrodes via a process known as extracellular electron transport (EET). Bacterial EET is a crucial process in the geochemical cycling of metals, bioremediation and bioenergy devices such as microbial fuel cells (MFCs). Recently, it has been found that electroactive bacteria can reverse their respiratory pathways by accepting electrons from a negatively poised electrode to produce high-value chemicals such as ethanol in a process termed as microbial electrosynthesis (MES). A poor electrical connection between bacteria and the electrode hinders the EET and MES processes significantly. Also, the bidirectional EET process is sluggish and needs to be improved drastically to extend its practical applications. Several attempts have been undertaken to improve the bidirectional EET by employing various advanced nanostructured materials such as carbon nanotubes and graphene. This review covers the recent progress in the bacterial bidirectional EET processes using advanced nanostructures in the light of current understandings of bacteria–nanomaterial interactions.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Extracellular electron transfer via microbial nanowires.

          Microbes that can transfer electrons to extracellular electron acceptors, such as Fe(iii) oxides, are important in organic matter degradation and nutrient cycling in soils and sediments. Previous investigations on electron transfer to Fe(iii) have focused on the role of outer-membrane c-type cytochromes. However, some Fe(iii) reducers lack c-cytochromes. Geobacter species, which are the predominant Fe(iii) reducers in many environments, must directly contact Fe(iii) oxides to reduce them, and produce monolateral pili that were proposed, on the basis of the role of pili in other organisms, to aid in establishing contact with the Fe(iii) oxides. Here we report that a pilus-deficient mutant of Geobacter sulfurreducens could not reduce Fe(iii) oxides but could attach to them. Conducting-probe atomic force microscopy revealed that the pili were highly conductive. These results indicate that the pili of G. sulfurreducens might serve as biological nanowires, transferring electrons from the cell surface to the surface of Fe(iii) oxides. Electron transfer through pili indicates possibilities for other unique cell-surface and cell-cell interactions, and for bioengineering of novel conductive materials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms.

            Shewanella oneidensis MR-1 produced electrically conductive pilus-like appendages called bacterial nanowires in direct response to electron-acceptor limitation. Mutants deficient in genes for c-type decaheme cytochromes MtrC and OmcA, and those that lacked a functional Type II secretion pathway displayed nanowires that were poorly conductive. These mutants were also deficient in their ability to reduce hydrous ferric oxide and in their ability to generate current in a microbial fuel cell. Nanowires produced by the oxygenic phototrophic cyanobacterium Synechocystis PCC6803 and the thermophilic, fermentative bacterium Pelotomaculum thermopropionicum reveal that electrically conductive appendages are not exclusive to dissimilatory metal-reducing bacteria and may, in fact, represent a common bacterial strategy for efficient electron transfer and energy distribution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              "Plugging into Enzymes": nanowiring of redox enzymes by a gold nanoparticle.

              The reconstitution of an apo-flavoenzyme, apo-glucose oxidase, on a 1.4-nanometer gold nanocrystal functionalized with the cofactor flavin adenine dinucleotide and integrated into a conductive film yields a bioelectrocatalytic system with exceptional electrical contact with the electrode support. The electron transfer turnover rate of the reconstituted bioelectrocatalyst is approximately 5000 per second, compared with the rate at which molecular oxygen, the natural cosubstrate of the enzyme, accepts electrons (approximately 700 per second). The gold nanoparticle acts as an electron relay or "electrical nanoplug" for the alignment of the enzyme on the conductive support and for the electrical wiring of its redox-active center.
                Bookmark

                Author and article information

                Journal
                RSCACL
                RSC Advances
                RSC Adv.
                Royal Society of Chemistry (RSC)
                2046-2069
                2016
                2016
                : 6
                : 36
                : 30582-30597
                Article
                10.1039/C6RA04734C
                ba5cfdb0-5070-4cd0-83bd-153e1435e142
                © 2016
                History

                Comments

                Comment on this article