40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Phytoestrogen Genistein Affects Zebrafish Development through Two Different Pathways

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Endocrine disrupting chemicals are widely distributed in the environment and derive from many different human activities or can also be natural products synthesized by plants or microorganisms. The phytoestrogen, genistein (4′, 5, 7-trihydroxy-isoflavone), is a naturally occurring compound found in soy products. Genistein has been the subject of numerous studies because of its known estrogenic activity.

          Methodology/Principal Findings

          We report that genistein exposure of zebrafish embryos induces apoptosis, mainly in the hindbrain and the anterior spinal cord. Timing experiments demonstrate that apoptosis is induced during a precise developmental window. Since adding ICI 182,780, an ER antagonist, does not rescue the genistein-induced apoptosis and since there is no synergistic effect between genistein and estradiol, we conclude that this apoptotic effect elicited by genistein is estrogen-receptors independent. However, we show in vitro, that genistein binds and activates the three zebrafish estrogen receptors ERα, ERβ-A and ERβ-B. Furthermore using transgenic ERE-Luciferase fish we show that genistein is able to activate the estrogen pathway in vivo during larval stages. Finally we show that genistein is able to induce ectopic expression of the aromatase-B gene in an ER-dependent manner in the anterior brain in pattern highly similar to the one resulting from estrogen treatment at low concentration.

          Conclusion/Significance

          Taken together these results indicate that genistein acts through at least two different pathways in zebrafish embryos: (i) it induces apoptosis in an ER-independent manner and (ii) it regulates aromatase-B expression in the brain in an ER-dependent manner. Our results thus highlight the multiplicity of possible actions of phytoestrogens, such as genistein. This suggests that the use of standardized endpoints to study the effect of a given compound, even when this compound has well known targets, may carry the risk of overlooking interesting effects of this compound.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta.

          The rat, mouse and human estrogen receptor (ER) exists as two subtypes, ER alpha and ER beta, which differ in the C-terminal ligand-binding domain and in the N-terminal transactivation domain. In this study, we investigated the estrogenic activity of environmental chemicals and phytoestrogens in competition binding assays with ER alpha or ER beta protein, and in a transient gene expression assay using cells in which an acute estrogenic response is created by cotransfecting cultures with recombinant human ER alpha or ER beta complementary DNA (cDNA) in the presence of an estrogen-dependent reporter plasmid. Saturation ligand-binding analysis of human ER alpha and ER beta protein revealed a single binding component for [3H]-17beta-estradiol (E2) with high affinity [dissociation constant (Kd) = 0.05 - 0.1 nM]. All environmental estrogenic chemicals [polychlorinated hydroxybiphenyls, dichlorodiphenyltrichloroethane (DDT) and derivatives, alkylphenols, bisphenol A, methoxychlor and chlordecone] compete with E2 for binding to both ER subtypes with a similar preference and degree. In most instances the relative binding affinities (RBA) are at least 1000-fold lower than that of E2. Some phytoestrogens such as coumestrol, genistein, apigenin, naringenin, and kaempferol compete stronger with E2 for binding to ER beta than to ER alpha. Estrogenic chemicals, as for instance nonylphenol, bisphenol A, o, p'-DDT and 2',4',6'-trichloro-4-biphenylol stimulate the transcriptional activity of ER alpha and ER beta at concentrations of 100-1000 nM. Phytoestrogens, including genistein, coumestrol and zearalenone stimulate the transcriptional activity of both ER subtypes at concentrations of 1-10 nM. The ranking of the estrogenic potency of phytoestrogens for both ER subtypes in the transactivation assay is different; that is, E2 > zearalenone = coumestrol > genistein > daidzein > apigenin = phloretin > biochanin A = kaempferol = naringenin > formononetin = ipriflavone = quercetin = chrysin for ER alpha and E2 > genistein = coumestrol > zearalenone > daidzein > biochanin A = apigenin = kaempferol = naringenin > phloretin = quercetin = ipriflavone = formononetin = chrysin for ER beta. Antiestrogenic activity of the phytoestrogens could not be detected, except for zearalenone which is a full agonist for ER alpha and a mixed agonist-antagonist for ER beta. In summary, while the estrogenic potency of industrial-derived estrogenic chemicals is very limited, the estrogenic potency of phytoestrogens is significant, especially for ER beta, and they may trigger many of the biological responses that are evoked by the physiological estrogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Headwaters of the zebrafish -- emergence of a new model vertebrate.

            The understanding of vertebrate development has advanced considerably in recent years, primarily due to the study of a few model organisms. The zebrafish, the newest of these models, has risen to prominence because both genetic and experimental embryological methods can be easily applied to this animal. The combination of approaches has proven powerful, yielding insights into the formation and function of individual tissues, organ systems and neural networks, and into human disease mechanisms. Here, we provide a personal perspective on the history of zebrafish research, from the assembly of the first genetic and embryological tools through to sequencing of the genome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos.

              Mesoderm formation is critical for the establishment of the animal body plan and in Drosophila requires the snail gene. This report concerns the cloning and expression pattern of the structurally similar gene snail1 from zebrafish. In situ hybridization shows that the quantity of snail1 RNA increases at the margin of the blastoderm in cells that involute during gastrulation. As gastrulation begins, snail1 RNA disappears from the dorsal axial mesoderm and becomes restricted to the paraxial mesoderm and the tail bud. snail1 RNA increases in cells that define the posterior border of each somite and then disappears when somitic cells differentiate. Later in development, expression appears in cephalic neural crest derivatives. Many snail1-expressing cells were missing from mutant spadetail embryos and the quantity of snail1 RNA was greatly reduced in mutant no tail embryos. The work presented here suggests that snail1 is involved in morphogenetic events during gastrulation, somitogenesis and development of the cephalic neural crest, and that no tail may act as a positive regulator of snail1.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                25 March 2009
                : 4
                : 3
                : e4935
                Affiliations
                [1 ]Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
                [2 ]Apoptosis and Oncogenesis Laboratory, Institut de Biologie et Chimie des Protéines, Université de Lyon, Université Lyon 1, Institut Fédératif Biosciences Gerland Lyon Sud, CNRS, Lyon, France
                [3 ]Karolinska Institutet, Department of Biosciences and Nutrition, Laboratory of Medical Nutrition, Stockholm, Sweden
                [4 ]Equipe INSERM U896 Institut de Recherche en Cancérologie de Montpellier (IRCM), Montpellier, France
                Institute of Genetics and Molecular and Cellular Biology, France
                Author notes

                Conceived and designed the experiments: YG PB VL. Performed the experiments: SSM YG LB SIN JM MAL GB. Analyzed the data: YG MAL GB PB VL. Contributed reagents/materials/analysis tools: SIN KF GB PB. Wrote the paper: YG VL.

                Article
                08-PONE-RA-07945
                10.1371/journal.pone.0004935
                2655710
                19319186
                ba64b4e4-1172-47b6-afce-26141316cac6
                Sassi-Messai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 28 December 2008
                : 10 February 2009
                Page count
                Pages: 13
                Categories
                Research Article
                Developmental Biology
                Molecular Biology/Transcription Initiation and Activation
                Diabetes and Endocrinology/Endocrinology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article