5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Photosynthetic Physiology of Blue, Green, and Red Light: Light Intensity Effects and Underlying Mechanisms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Red and blue light are traditionally believed to have a higher quantum yield of CO 2 assimilation ( QY, moles of CO 2 assimilated per mole of photons) than green light, because green light is absorbed less efficiently. However, because of its lower absorptance, green light can penetrate deeper and excite chlorophyll deeper in leaves. We hypothesized that, at high photosynthetic photon flux density ( PPFD), green light may achieve higher QY and net CO 2 assimilation rate ( A n) than red or blue light, because of its more uniform absorption throughtout leaves. To test the interactive effects of PPFD and light spectrum on photosynthesis, we measured leaf A n of “Green Tower” lettuce ( Lactuca sativa) under red, blue, and green light, and combinations of those at PPFDs from 30 to 1,300 μmol⋅m –2⋅s –1. The electron transport rates ( J) and the maximum Rubisco carboxylation rate ( V c,max) at low (200 μmol⋅m –2⋅s –1) and high PPFD (1,000 μmol⋅m –2⋅s –1) were estimated from photosynthetic CO 2 response curves. Both QY m,inc (maximum QY on incident PPFD basis) and J at low PPFD were higher under red light than under blue and green light. Factoring in light absorption, QY m,abs (the maximum QY on absorbed PPFD basis) under green and red light were both higher than under blue light, indicating that the low QY m,inc under green light was due to lower absorptance, while absorbed blue photons were used inherently least efficiently. At high PPFD, the QY inc [gross CO 2 assimilation ( A g)/incident PPFD] and J under red and green light were similar, and higher than under blue light, confirming our hypothesis. V c,max may not limit photosynthesis at a PPFD of 200 μmol m –2 s –1 and was largely unaffected by light spectrum at 1,000 μmol⋅m –2⋅s –1. A g and J under different spectra were positively correlated, suggesting that the interactive effect between light spectrum and PPFD on photosynthesis was due to effects on J. No interaction between the three colors of light was detected. In summary, at low PPFD, green light had the lowest photosynthetic efficiency because of its low absorptance. Contrary, at high PPFD, QY inc under green light was among the highest, likely resulting from more uniform distribution of green light in leaves.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Fitting photosynthetic carbon dioxide response curves for C(3) leaves.

          Photosynthetic responses to carbon dioxide concentration can provide data on a number of important parameters related to leaf physiology. Methods for fitting a model to such data are briefly described. The method will fit the following parameters: V(cmax), J, TPU, R(d) and g(m)[maximum carboxylation rate allowed by ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), rate of photosynthetic electron transport (based on NADPH requirement), triose phosphate use, day respiration and mesophyll conductance, respectively]. The method requires at least five data pairs of net CO(2) assimilation (A) and [CO(2)] in the intercellular airspaces of the leaf (C(i)) and requires users to indicate the presumed limiting factor. The output is (1) calculated CO(2) partial pressure at the sites of carboxylation, C(c), (2) values for the five parameters at the measurement temperature and (3) values adjusted to 25 degrees C to facilitate comparisons. Fitting this model is a way of exploring leaf level photosynthesis. However, interpreting leaf level photosynthesis in terms of underlying biochemistry and biophysics is subject to assumptions that hold to a greater or lesser degree, a major assumption being that all parts of the leaf are behaving in the same way at each instant.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of temperature on the CO2/O 2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light : Estimates from gas-exchange measurements on spinach.

            Responses of the rate of net CO2 assimilation (A) to the intercellular partial pressure of CO2 (p i ) were measured on intact spinach (Spinacia oleracea L.) leaves at different irradiances. These responses were analysed to find the value of p i at which the rate of photosynthetic CO2 uptake equalled that of photorespiratory CO2 evolution. At this CO2 partial pressure (denoted Г), net rate of CO2 assimilation was negative, indicating that there was non-photorespiratory CO2 evolution in the light. Hence Г was lower than the CO2 compensation point, Γ. Estimates of Г were obtained at leaf temperatures from 15 to 30°C, and the CO2/O2 specificity of ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (E.C. 4.1.1.39) was calculated from these data, taking into account changes in CO2 and O2 solubilities with temperature. The CO2/O2 specificity decreased with increasing temperature. Therefore we concluded that temperature effects on the ratio of photorespiration to photosynthesis were not solely the consequence of differential effects of temperature on the solubilities of CO2 and O2. Our estimates of the CO2/O2 specificity of RuBP carboxylase/oxygenase are compared with in-vitro measurements by other authors. The rate of nonphotorespiratory CO2 evolution in the light (R d ) was obtained from the value of A at Г. At this low CO2 partial pressure, R d was always less than the rate of CO2 evolution in darkness and appeared to decrease with increasing irradiance. The decline was most marked up to about 100 μmol quanta m(-2) s(-1) and less marked at higher irradiances. At one particular irradiance, however, R d as a proportion of the rate of CO2 evolution in darkness was similar in different leaves and this proportion was unaffected by leaf temperature or by [O2] (ambient and greater). After conditions of high [CO2] and high irradiance for several hours, the rate of CO2 evolution in darkness increased and R d also increased.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes.

              Sulfur is required for growth of all organisms and is present in a wide variety of metabolites having distinctive biological functions. Sulfur is cycled in ecosystems in nature where conversion of sulfate to organic sulfur compounds is primarily dependent on sulfate uptake and reduction pathways in photosynthetic organisms and microorganisms. In vascular plant species, transport proteins and enzymes in this pathway are functionally diversified to have distinct biochemical properties in specific cellular and subcellular compartments. Recent findings indicate regulatory processes of sulfate transport and metabolism are tightly connected through several modes of transcriptional and posttranscriptional mechanisms. This review provides up-to-date knowledge in functions and regulations of sulfur assimilation in plants and algae, focusing on sulfate transport systems and metabolic pathways for sulfate reduction and synthesis of downstream metabolites with diverse biological functions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                05 March 2021
                2021
                : 12
                : 619987
                Affiliations
                Horticultural Physiology Laboratory, Department of Horticulture, University of Georgia , Athens, GA, United States
                Author notes

                Edited by: Bernard Grodzinski, University of Guelph, Canada

                Reviewed by: Jan Graefe, Leibniz Institute of Vegetable and Ornamental Crops, Germany; Cristian Silvestri, University of Tuscia, Italy

                *Correspondence: Jun Liu, jun.liu26@ 123456uga.edu

                This article was submitted to Crop and Product Physiology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2021.619987
                7977723
                33747002
                ba7a5ea1-3d7a-45f4-8899-242469c27217
                Copyright © 2021 Liu and van Iersel.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 October 2020
                : 11 February 2021
                Page count
                Figures: 9, Tables: 2, Equations: 2, References: 45, Pages: 14, Words: 0
                Funding
                Funded by: National Institute of Food and Agriculture 10.13039/100005825
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                photosynthesis,quantum yield of co2 assimilation,light spectrum,photosynthetic photon flux density,electron transport,vc,max,light intensity,light quality

                Comments

                Comment on this article