11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ARP2/3-independent WAVE/SCAR pathway and class XI myosin control sperm nuclear migration in flowering plants

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          After eukaryotic fertilization, gamete nuclei migrate to fuse parental genomes in order to initiate development of the next generation. In most animals, microtubules control female and male pronuclear migration in the zygote. Flowering plants, on the other hand, have evolved actin filament (F-actin)-based sperm nuclear migration systems for karyogamy. Flowering plants have also evolved a unique double-fertilization process: two female gametophytic cells, the egg and central cells, are each fertilized by a sperm cell. The molecular and cellular mechanisms of how flowering plants utilize and control F-actin for double-fertilization events are largely unknown. Using confocal microscopy live-cell imaging with a combination of pharmacological and genetic approaches, we identified factors involved in F-actin dynamics and sperm nuclear migration in Arabidopsis thaliana( Arabidopsis) and Nicotiana tabacum(tobacco). We demonstrate that the F-actin regulator, SCAR2, but not the ARP2/3 protein complex, controls the coordinated active F-actin movement. These results imply that an ARP2/3-independent WAVE/SCAR-signaling pathway regulates F-actin dynamics in female gametophytic cells for fertilization. We also identify that the class XI myosin XI-G controls active F-actin movement in the Arabidopsiscentral cell. XI-G is not a simple transporter, moving cargos along F-actin, but can generate forces that control the dynamic movement of F-actin for fertilization. Our results provide insights into the mechanisms that control gamete nuclear migration and reveal regulatory pathways for dynamic F-actin movement in flowering plants.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana

          The Agrobacterium vacuum infiltration method has made it possible to transform Arabidopsis thaliana without plant tissue culture or regeneration. In the present study, this method was evaluated and a substantially modified transformation method was developed. The labor-intensive vacuum infiltration process was eliminated in favor of simple dipping of developing floral tissues into a solution containing Agrobacterium tumefaciens, 5% sucrose and 500 microliters per litre of surfactant Silwet L-77. Sucrose and surfactant were critical to the success of the floral dip method. Plants inoculated when numerous immature floral buds and few siliques were present produced transformed progeny at the highest rate. Plant tissue culture media, the hormone benzylamino purine and pH adjustment were unnecessary, and Agrobacterium could be applied to plants at a range of cell densities. Repeated application of Agrobacterium improved transformation rates and overall yield of transformants approximately twofold. Covering plants for 1 day to retain humidity after inoculation also raised transformation rates twofold. Multiple ecotypes were transformable by this method. The modified method should facilitate high-throughput transformation of Arabidopsis for efforts such as T-DNA gene tagging, positional cloning, or attempts at targeted gene replacement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            TrackMate: An open and extensible platform for single-particle tracking.

            We present TrackMate, an open source Fiji plugin for the automated, semi-automated, and manual tracking of single-particles. It offers a versatile and modular solution that works out of the box for end users, through a simple and intuitive user interface. It is also easily scriptable and adaptable, operating equally well on 1D over time, 2D over time, 3D over time, or other single and multi-channel image variants. TrackMate provides several visualization and analysis tools that aid in assessing the relevance of results. The utility of TrackMate is further enhanced through its ability to be readily customized to meet specific tracking problems. TrackMate is an extensible platform where developers can easily write their own detection, particle linking, visualization or analysis algorithms within the TrackMate environment. This evolving framework provides researchers with the opportunity to quickly develop and optimize new algorithms based on existing TrackMate modules without the need of having to write de novo user interfaces, including visualization, analysis and exporting tools. The current capabilities of TrackMate are presented in the context of three different biological problems. First, we perform Caenorhabditis-elegans lineage analysis to assess how light-induced damage during imaging impairs its early development. Our TrackMate-based lineage analysis indicates the lack of a cell-specific light-sensitive mechanism. Second, we investigate the recruitment of NEMO (NF-κB essential modulator) clusters in fibroblasts after stimulation by the cytokine IL-1 and show that photodamage can generate artifacts in the shape of TrackMate characterized movements that confuse motility analysis. Finally, we validate the use of TrackMate for quantitative lifetime analysis of clathrin-mediated endocytosis in plant cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonequilibrium mechanics of active cytoskeletal networks.

              Cells both actively generate and sensitively react to forces through their mechanical framework, the cytoskeleton, which is a nonequilibrium composite material including polymers and motor proteins. We measured the dynamics and mechanical properties of a simple three-component model system consisting of myosin II, actin filaments, and cross-linkers. In this system, stresses arising from motor activity controlled the cytoskeletal network mechanics, increasing stiffness by a factor of nearly 100 and qualitatively changing the viscoelastic response of the network in an adenosine triphosphate-dependent manner. We present a quantitative theoretical model connecting the large-scale properties of this active gel to molecular force generation.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                December 22 2020
                December 22 2020
                December 22 2020
                December 07 2020
                : 117
                : 51
                : 32757-32763
                Article
                10.1073/pnas.2015550117
                33288691
                ba7ad326-9cc1-4f9c-8d7e-a403107a16d8
                © 2020

                Free to read

                https://www.pnas.org/site/aboutpnas/licenses.xhtml

                History

                Comments

                Comment on this article