Blog
About

20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Augmented Renal Clearance in Critical Illness: An Important Consideration in Drug Dosing

      * ,

      Pharmaceutics

      MDPI

      augmented renal clearance, enhanced renal function, critically ill

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Augmented renal clearance (ARC) is a manifestation of enhanced renal function seen in critically ill patients. The use of regular unadjusted doses of renally eliminated drugs in patients with ARC might lead to therapy failure. The purpose of this scoping review was to provide and up-to-date summary of the available evidence pertaining to the phenomenon of ARC. A literature search of databases of available evidence in humans, with no language restriction, was conducted. Databases searched were MEDLINE (1946 to April 2017), EMBASE (1974 to April 2017) and the Cochrane Library (1999 to April 2017). A total of 57 records were included in the present review: 39 observational studies (25 prospective, 14 retrospective), 6 case reports/series and 12 conference abstracts. ARC has been reported to range from 14 to 80%. ARC is currently defined as an increased creatinine clearance of greater than 130 mL/min/1.73 m 2 best measured by 8–24 h urine collection. Patients exhibiting ARC tend to be younger (<50 years old), of male gender, had a recent history of trauma, and had lower critical illness severity scores. Numerous studies have reported antimicrobials treatment failures when using standard dosing regimens in patients with ARC. In conclusion, ARC is an important phenomenon that might have significant impact on outcome in critically ill patients. Identifying patients at risk, using higher doses of renally eliminated drugs or use of non-renally eliminated alternatives might need to be considered in ICU patients with ARC. More research is needed to solidify dosing recommendations of various drugs in patients with ARC.

          Related collections

          Most cited references 67

          • Record: found
          • Abstract: found
          • Article: not found

          Subtherapeutic initial β-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations.

          β-Lactams are routinely used as empirical therapy in critical illness, with extended concentrations above the minimum inhibitory concentration (MIC) of the infecting organism required for effective treatment. Changes in renal function in this setting can significantly impact the probability of achieving such targets. Analysis was made of trough plasma drug concentrations obtained via therapeutic drug monitoring, compared with renal function, in critically ill patients receiving empirical β-lactam therapy. Drug concentrations were measured by means of high-performance liquid chromatography and corrected for protein binding. Therapeutic levels were defined as greater than or equal to MIC and greater than or equal to four times MIC (maximum bacterial eradication), respectively. Renal function was assessed by means of an 8-h creatinine clearance (CLCR). Fifty-two concurrent trough concentrations and CLCR measures were used in analysis. Piperacillin was the most frequent β-lactam prescribed (48%), whereas empirical cover and Staphylococcus species were the most common indications for therapy (62%). Most patients were mechanically ventilated on the day of study (85%), although only 25% were receiving vasopressors. In only 58% (n = 30) was the trough drug concentration greater than or equal to MIC, falling to 31% (n = 16) when using four times MIC as the target. CLCR values ≥ 130 mL/min/1.73 m2 were associated with trough concentrations less than MIC in 82% (P < .001) and less than four times MIC in 72% (P < .001). CLCR remained a significant predictor of subtherapeutic concentrations in multivariate analysis. Elevated CLCR appears to be an important predictor of subtherapeutic β-lactam concentrations and suggests an important role in identifying such patients in the ICU.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The pharmacokinetic and pharmacodynamic properties of vancomycin.

            Vancomycin is one of only a few antibiotics available to treat patients infected with methicillin-resistant Staphylococcus aureus and methicillin-resistant, coagulase-negative Staphylococcus species. Therefore, understanding the clinical implications of the pharmacokinetic and pharmacodynamic properties of vancomycin is a necessity for clinicians. Vancomycin is a concentration-independent antibiotic (also referred to as a "time-dependent" antibiotic), and there are factors that affect its clinical activity, including variable tissue distribution, inoculum size, and emerging resistance. This article reviews the pharmacokinetic and pharmacodynamic data related to vancomycin and discusses such clinical issues as toxicities and serum concentration monitoring.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Augmented renal clearance: implications for antibacterial dosing in the critically ill.

              The prescription of pharmaceuticals in the critically ill is complicated by a paucity of knowledge concerning the pharmacokinetic implications of the underlying disease state. Changes in organ function can be dramatic in this population, both as a consequence of the primary pathophysiology and in response to clinical interventions provided. Vascular tone, fluid status, cardiac output and major organ blood flow can be significantly altered from baseline, influencing the volume of distribution and clearance of many commonly prescribed agents. Although measurable endpoints can be used to titrate doses for many drugs in this setting (such as sedatives), for those agents with silent pharmacodynamic indices, enhanced excretory organ function can result in unexpectedly low plasma concentrations, leading to treatment failure. This is particularly relevant to the use of antibacterials in the critically ill, where inadequate, inappropriate and/or delayed prescription can have significant effects on morbidity and mortality. Augmented renal clearance (ARC) refers to enhanced renal elimination of circulating solute and is being described with increasing regularity in the critically ill. However, defining this process in terms of current measures of renal function is problematic, as although the glomerular filtration rate (GFR) is largely considered the best index of renal function, there is no consensus on an upper limit of normal. In addition, the most readily available and accurate estimate of the GFR at the bedside is still widely debated. From a pharmacokinetic point of view, ARC can result in elevated renal elimination and subtherapeutic plasma concentrations of pharmaceuticals, although whether this process solely involves augmented filtration (as opposed to enhanced tubular secretion and/or reabsorption) remains uncertain. The primary contributors to this process are likely to be the innate immune response to infection and inflammation (with its associated systemic and haemodynamic consequences), fluid loading and use of vasoactive medications. The resultant increase in cardiac output and renal blood flow prompts enhanced glomerular filtration and drug elimination. Current evidence suggests that young patients without pre-existing co-morbidity or organ dysfunction who present with trauma are most likely to manifest ARC. As this phenomenon has received little attention in the literature, dose modification has rarely been considered. However, with increasing data supporting the concept, and many investigators demonstrating subtherapeutic concentrations of drugs in the critically ill, consideration of ARC and alternative dosing regimens is now mandatory, both to improve the likelihood of treatment success and to reduce the rate of development of antibacterial resistance.
                Bookmark

                Author and article information

                Journal
                Pharmaceutics
                Pharmaceutics
                pharmaceutics
                Pharmaceutics
                MDPI
                1999-4923
                16 September 2017
                September 2017
                : 9
                : 3
                Affiliations
                Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 1C9, Canada; cshen2@ 123456ualberta.ca
                Author notes
                [* ]Correspondence: smahmoud@ 123456ualberta.ca ; Tel.: +1-780-492-5364
                Article
                pharmaceutics-09-00036
                10.3390/pharmaceutics9030036
                5620577
                28926966
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Review

                Comments

                Comment on this article