8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation

      , , ,
      Atmospheric Chemistry and Physics
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p><strong>Abstract.</strong> As a class of brown carbon, organonitrogen compounds originating from the heterogeneous uptake of NH<sub>3</sub> by secondary organic aerosol (SOA) have received significant attention recently. In the current work, particulate organonitrogen formation during the ozonolysis of α-pinene and the OH oxidation of <i>m</i>-xylene in the presence of ammonia (34–125 ppb) was studied in a smog chamber equipped with a high resolution time-of-flight aerosol mass spectrometer and a quantum cascade laser instrument. A large diversity of nitrogen-containing organic (NOC) fragments was observed which were consistent with the reactions between ammonia and carbonyl-containing SOA. Ammonia uptake coefficients onto SOA which led to organonitrogen compounds were reported for the first time, and were in the range of &amp;sim; 10<sup>-3</sup>–10<sup>−2</sup>, decreasing significantly to < 10<sup>-5</sup> after 6 h of reaction. At the end of experiments (~ 6 h) the NOC mass contributed 8.9 ± 1.7 and 31.5 ± 4.4 wt % to the total α-pinene- and <i>m</i>-xylene-derived SOA, respectively, and 4–15 wt % of the total nitrogen in the system. Uptake coefficients were also found to be positively correlated with particle acidity and negatively correlated with NH<sub>3</sub> concentration, indicating that heterogeneous reactions were responsible for the observed NOC mass, possibly limited by liquid phase diffusion. Under these conditions, the data also indicate that the formation of NOC can compete kinetically with inorganic acid neutralization. The formation of NOC in this study suggests that a significant portion of the ambient particle associated N may be derived from NH<sub>3</sub> heterogeneous reactions with SOA. NOC from such a mechanism may be an important and unaccounted for source of PM associated nitrogen. This mechanism may also contribute to the medium or long-range transport and wet/dry deposition of atmospheric nitrogen.</p>

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Enhanced nitrogen deposition over China.

          China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen. These emissions result in the deposition of atmospheric nitrogen (N) in terrestrial and aquatic ecosystems, with implications for human and ecosystem health, greenhouse gas balances and biological diversity. However, information on the magnitude and environmental impact of N deposition in China is limited. Here we use nationwide data sets on bulk N deposition, plant foliar N and crop N uptake (from long-term unfertilized soils) to evaluate N deposition dynamics and their effect on ecosystems across China between 1980 and 2010. We find that the average annual bulk deposition of N increased by approximately 8 kilograms of nitrogen per hectare (P < 0.001) between the 1980s (13.2 kilograms of nitrogen per hectare) and the 2000s (21.1 kilograms of nitrogen per hectare). Nitrogen deposition rates in the industrialized and agriculturally intensified regions of China are as high as the peak levels of deposition in northwestern Europe in the 1980s, before the introduction of mitigation measures. Nitrogen from ammonium (NH4(+)) is the dominant form of N in bulk deposition, but the rate of increase is largest for deposition of N from nitrate (NO3(-)), in agreement with decreased ratios of NH3 to NOx emissions since 1980. We also find that the impact of N deposition on Chinese ecosystems includes significantly increased plant foliar N concentrations in natural and semi-natural (that is, non-agricultural) ecosystems and increased crop N uptake from long-term-unfertilized croplands. China and other economies are facing a continuing challenge to reduce emissions of reactive nitrogen, N deposition and their negative effects on human health and the environment.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A technology-based global inventory of black and organic carbon emissions from combustion

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

                Bookmark

                Author and article information

                Journal
                Atmospheric Chemistry and Physics
                Atmos. Chem. Phys.
                Copernicus GmbH
                1680-7324
                2015
                December 09 2015
                : 15
                : 23
                : 13569-13584
                Article
                10.5194/acp-15-13569-2015
                ba9b8c63-d32a-4e9e-8418-b015ed02afa9
                © 2015

                https://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article