297
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-κB signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A previously unappreciated deubiquitinase activity of MCP-induced protein 1 contributes to its role in dampening inflammatory signaling.

          Abstract

          The intensity and duration of macrophage-mediated inflammatory responses are controlled by proteins that modulate inflammatory signaling pathways. MCPIP1 (monocyte chemotactic protein–induced protein 1), a recently identified CCCH Zn finger–containing protein, plays an essential role in controlling macrophage-mediated inflammatory responses. However, its mechanism of action is poorly understood. In this study, we show that MCPIP1 negatively regulates c-Jun N-terminal kinase (JNK) and NF-κB activity by removing ubiquitin moieties from proteins, including TRAF2, TRAF3, and TRAF6. MCPIP1-deficient mice spontaneously developed fatal inflammatory syndrome. Macrophages and splenocytes from MCPIP1 −/− mice showed elevated expression of inflammatory gene expression, increased JNK and IκB kinase activation, and increased polyubiquitination of TNF receptor–associated factors. In vitro assays directly demonstrated the deubiquitinating activity of purified MCPIP1. Sequence analysis together with serial mutagenesis defined a deubiquitinating enzyme domain and a ubiquitin association domain in MCPIP1. Our results indicate that MCPIP1 is a critical modulator of inflammatory signaling.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          A genomic and functional inventory of deubiquitinating enzymes.

          Posttranslational modification of proteins by the small molecule ubiquitin is a key regulatory event, and the enzymes catalyzing these modifications have been the focus of many studies. Deubiquitinating enzymes, which mediate the removal and processing of ubiquitin, may be functionally as important but are less well understood. Here, we present an inventory of the deubiquitinating enzymes encoded in the human genome. In addition, we review the literature concerning these enzymes, with particular emphasis on their function, specificity, and the regulation of their activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes.

            Deubiquitinating enzymes (DUBs) are proteases that process ubiquitin or ubiquitin-like gene products, reverse the modification of proteins by a single ubiquitin(-like) protein, and remodel polyubiquitin(-like) chains on target proteins. The human genome encodes nearly 100 DUBs with specificity for ubiquitin in five gene families. Most DUB activity is cryptic, and conformational rearrangements often occur during the binding of ubiquitin and/or scaffold proteins. DUBs with specificity for ubiquitin contain insertions and extensions modulating DUB substrate specificity, protein-protein interactions, and cellular localization. Binding partners and multiprotein complexes with which DUBs associate modulate DUB activity and substrate specificity. Quantitative studies of activity and protein-protein interactions, together with genetic studies and the advent of RNAi, have led to new insights into the function of yeast and human DUBs. This review discusses ubiquitin-specific DUBs, some of the generalizations emerging from recent studies of the regulation of DUB activity, and their roles in various cellular processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain.

              TRAF6 is a signal transducer in the NF-kappaB pathway that activates IkappaB kinase (IKK) in response to proinflammatory cytokines. We have purified a heterodimeric protein complex that links TRAF6 to IKK activation. Peptide mass fingerprinting analysis reveals that this complex is composed of the ubiquitin conjugating enzyme Ubc13 and the Ubc-like protein Uev1A. We find that TRAF6, a RING domain protein, functions together with Ubc13/Uev1A to catalyze the synthesis of unique polyubiquitin chains linked through lysine-63 (K63) of ubiquitin. Blockade of this polyubiquitin chain synthesis, but not inhibition of the proteasome, prevents the activation of IKK by TRAF6. These results unveil a new regulatory function for ubiquitin, in which IKK is activated through the assembly of K63-linked polyubiquitin chains.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                20 December 2010
                : 207
                : 13
                : 2959-2973
                Affiliations
                [1 ]Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
                [2 ]Department of Basic Medical Science and [3 ]Shock Trauma Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO 64108
                [4 ]Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35242
                Author notes
                CORRESPONDENCE Mingui Fu: fum@ 123456umkc.edu

                J. Liang and Y. Saad contributed equally to this paper.

                Article
                20092641
                10.1084/jem.20092641
                3005225
                21115689
                bab42b2f-ec9a-4600-b9d4-2e27e2e7001e
                © 2010 Liang et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 10 December 2009
                : 1 November 2010
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article