12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      mTORC2 in the dorsomedial striatum of mice contributes to alcohol-dependent F-Actin polymerization, structural modifications, and consumption

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="Par1">Actin is highly enriched at dendritic spines, and actin remodeling plays an essential role in structural plasticity. The mammalian target of rapamycin complex 2 (mTORC2) is a regulator of actin polymerization. Here, we report that alcohol consumption increases F-actin content in the dorsomedial striatum (DMS) of mice, thereby altering dendritic spine morphology in a mechanism that requires mTORC2. Specifically, we found that excessive alcohol consumption increases mTORC2 activity in the DMS, and that knockdown of Rictor, an essential component of mTORC2 signaling, reduces actin polymerization, and attenuates the alcohol-dependent alterations in spine head size and the number of mushroom spines. Finally, we show that knockdown of Rictor in the DMS reduces alcohol consumption, whereas intra-DMS infusion of the mTORC2 activator, A-443654, increases alcohol intake. Together, these results suggest that mTORC2 in the DMS facilitates the formation of F-actin, which in turn induces changes in spine structure to promote and/or maintain excessive alcohol intake. </p>

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Modulation of striatal projection systems by dopamine.

          The basal ganglia are a chain of subcortical nuclei that facilitate action selection. Two striatal projection systems--so-called direct and indirect pathways--form the functional backbone of the basal ganglia circuit. Twenty years ago, investigators proposed that the striatum's ability to use dopamine (DA) rise and fall to control action selection was due to the segregation of D(1) and D(2) DA receptors in direct- and indirect-pathway spiny projection neurons. Although this hypothesis sparked a debate, the evidence that has accumulated since then clearly supports this model. Recent advances in the means of marking neural circuits with optical or molecular reporters have revealed a clear-cut dichotomy between these two cell types at the molecular, anatomical, and physiological levels. The contrast provided by these studies has provided new insights into how the striatum responds to fluctuations in DA signaling and how diseases that alter this signaling change striatal function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure-stability-function relationships of dendritic spines.

            Dendritic spines, which receive most of the excitatory synaptic input in the cerebral cortex, are heterogeneous with regard to their structure, stability and function. Spines with large heads are stable, express large numbers of AMPA-type glutamate receptors, and contribute to strong synaptic connections. By contrast, spines with small heads are motile and unstable and contribute to weak or silent synaptic connections. Their structure-stability-function relationships suggest that large and small spines are "memory spines" and "learning spines", respectively. Given that turnover of glutamate receptors is rapid, spine structure and the underlying organization of the actin cytoskeleton are likely to be major determinants of fast synaptic transmission and, therefore, are likely to provide a physical basis for memory in cortical neuronal networks. Characterization of supramolecular complexes responsible for synaptic memory and learning is key to the understanding of brain function and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Twenty-five years of mTOR: Uncovering the link from nutrients to growth

              Significance The mechanisms that regulate organismal growth and coordinate it with the availability of nutrients were unknown until a few decades ago. We now know that one pathway—the mechanistic target of rapamycin (mTOR) pathway—is the major nutrient-sensitive regulator of growth in animals and plays a central role in physiology, metabolism, the aging process, and common diseases. This work describes the development of the mTOR field, from its origins in studies into the mechanism of action of the drug rapamycin to our increasingly sophisticated understanding of how nutrients are sensed.
                Bookmark

                Author and article information

                Journal
                Neuropsychopharmacology
                Neuropsychopharmacol
                Springer Nature
                0893-133X
                1740-634X
                February 7 2018
                :
                :
                Article
                10.1038/s41386-018-0012-1
                5983552
                29497165
                babd07ac-65c3-405e-9680-e0af8c7ea78d
                © 2018
                History

                Comments

                Comment on this article